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Section I

OPERATIONAL ASPECTS OF CONSTANT-PRESSURE TRAJECTORIES

1.1. Introduction and Definitions.

The trajectory of any obJect is the locus of the successive posi-

tions it occupies in space. If we further place marks along this geo-

metric curve and denote the times when the object coincides with these

marks, the trajectory completely describes the motion of the object.

Specifically, when the object is a parcel of the atmosphere, we speak

about an air trajectory. Since the air generally moves vertically as

well as horizontally, an air trajectory is a three-dimensional curve.

By a constant-pressure-surface trajectory or in short a constant-

pressure trajectory, is meant the trajectory of an object that at all

times stays in a constant-pressure surface and moves with the wind in

this surface. Such a trajectory is approximated by a balloon that is

controlled to float at a constant pressure, i.e., a constant-pressure

balloon.

This Manual is mainly concerned with constant-pressure-surface tra-

jectories.
A constant-pressure trajectory will usually not coincide with the

air trajectory originating from the same point in time and space. Only

when the flow is isobaric (i.e., the air does not ascend or descend

through the pressure surface in question) will this be the case.
Also, the horizontal projection of the air trajectory through a

point is usually different from the constant-pressure trajectory

through the same point. The difference between the two types of tra-
jectories is well illustrated by an interesting study by Wexler [31].

Wexler attempted to trace the smoke pall that occurred in September 1950

over locations in the eastern United States back to the forest fires in
Canada that originated the smoke. Constant-pressure trajectories at

various pressure levels failed to lead back to the correct origin. The

air and the smoke with it followed air trajectories which, because of

the vertical displacement of the air, had horizontal projections con-

siderably different from any of the constant-pressure trajectories.

Only when the trajectory was computed on isentropic surfaces did it

9lead back to the correct origin.
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In routine forecasting meteox-ologists are only indirectly con-

cerned with the question, "Where does the air come from?' or, "Where

does the air go to?" Since we are used to studying flow patterns at

synoptic hours, our forecasting experience and forecasting rules have

come to be based on the succession of these synoptic charts. In other

words, we think in terms of change of flow patterns rather than in

terms of change of position of the air parcels composing the flow.

Hence, construction of trajectories requires special techniques.
The first large-scale attempt at computing atmospheric trajec-

tories was done by Shaw and Lempfert [27] who studied trajectories of

the surface currents over England and northwest France. In the United

States, Meisinger (21] was a pioneer. He made several "constant"-
altitude balloon flights from 5000 to 10,000 feet and compared the tra-

jectories with the sea-level ("surface") pressure chart (the only chart

available at that time). In one flight from' Fort Omaha to Arkansas, he

found that the actual average speed of the balloon (5000 feet) and the
.average speed computed from the gradient wind, coincidentally, agreed

within 1 knot.

Interest in constant-level balloons was revived during and after
World War II, when their potentialities for meteorological research

again became apparent.

1.2. Constant-Pressure Balloons.

The balloons currently in use ascend at a rate of 700-1000 feet

per minute, and can be control.Led to float at a predetermined pressure.

Balloons have been flown in the past at a wide variety of pressures,

mostly ranging from 300 mb to 50 mb, or even higher.
When the balloon approaches the intended floating pressure, gas is

let out to decrease buoyancy and stop the ascending motion. If the
balloon for some reason should start sinking below this pressure level,
ballast is expended to increase the buoyancy. The flows of gas and
ballast are controlled barometrically. To keep the expenditure of gas

and ballast at a minimum and to keep the oscillations about the stable

pressure value small, the baroswitch flow-controls are quite complex
devices to provide some kind of damping on the oscillations.

Disturbances that may upset the equilibrium after it Is once es-

tablished, may stem from various sources: vertical currents, diffusion

of gas through the balloon, changes of temperature of the ambient air, J

2
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changes in temperature of the gas in the balloon due to change in the

insolation and long-wave radiation. The changes in insolation are par-

ticularly large at sunrise and sunset and would cause large changes in

the altitude of the balloon if not compensated for by release of gas or
ballast. Hence, expenditure of gas and ballast is greatest at sunset

and sunrise and largely determines the practical limit of the flight

duration of present constant-pressure balloon systems.
The duration may be several days. Balloons released from points

in the western and mid-western United States have been recovered from

as far as Norway and Algeria after about 3 days flight. During World

War II the Japanese released their "balloon bombs" from Japan. About

10% of these were found on the West Coast of the North American Conti-

nent and many more probably reached land without being discovered.
This represens a distance of 5000 miles or more.

The balloons are usually able to stay within 10-15 mb of the in-

tended floating pressure.
The balloons may carry a radio transmitter and a power supply for

tracking purposes and for sending other pertinent information such as

pressure altitude, ballast expenditure, ttc. A parachute may be at-
tached to recover instruments after flight termination.

Constant-pressure ballons are valuable tools in meteorological re-

search. They provide measurements of winds and accelerations, to an

accuracy not obtained before. Indirectly, they can provide estimates
of derived quantities such as pressure gradients, vertical motions,

eddy spectra, etc.
It has been suggested that constant-pressure balloons released at

regular intervals from favorable sites be used to supply upper-air data

for routine synoptic charts (Navy transosondes).

1.3. Weather Requirements for Balloon Launching.

Strong surface winds and precipitation adversely affect the

launching of the balloons.
Launching in winds of more than 25 knots is usually not attempted

with present launching techniques. The wind direction also has to be

considered locally with regards to clearing ground obstructions.
Rain or snow increases the load on the balloon and upsets the

planned ascent rates or even prevents it from rising.
Launching in strong convective storms must be avoided for obvious

3



'!

AWSM 105-47 September 1956

reasons (turbulence, icing, and precipitation of rain, snow, or hail). 0
Similarly, the balloon must not rise through cloud layers that

contain supercooled dropl3ts. Even light icing is likely to terminate

the flight.

1.4. Kinematic and Dynamic Methods.

A constant-pressure balloon will drift with the air that surrounds

it at any time. Hence, if the wind in the pressure surface is known at

all points and at all times during the flight, the trajectory can be

constr~ted as follows: starting at the initial point and time, move

the balloon with the wind for a Short time interval, determine the wind

at the new position and time, and then move it on for another time in-

terval with this new wind, etc. Methods of constructing the trajectory

4 in this manner from knowledge of the wind field are called kinematic

methods.
In practice the wind field is analyzed or prognosticated only at

certain synoptic times, usually 12 or 24 hours apart, and the kinematic

methods to be used in practice must be based on these synoptic charts.
Some assumption as to how the flow on Chart h gets transformed into the
flow on Chart h + 12 hours or h + 24 hours has to be made. It is main-

ly as to how this transformation occurs that the various kinematic

methods differ. For instance, the Central Tendency Method assumes that

the flow remains stationary for a period from 6 hours before to 6 hours

after map time and that the transition to the flow of the next chart

occurs discontinuously. Another example: the Linear Interpolation

Method assumes that the wind at a point changes linearly with time in

the period between two charts.
The kinematic methods that are described in Section I of this Man-

ual are: 1) Petterssents Method, 2) the Central Tendency Method,

3) Consecutive Streamline Methods, 4) the Linear Interpolation Method,

5) the Relative Trajectory Method, and 6) General Mill's Method.

These methods all have their particular advantages and it cannot

be stated that any one of them is superior to the others under all con-

ditions. This fairly complete list of standard kinematic methods has,

therefore, been included in the Manual. The selection of the optimum

method under certain conditions depends on many factors. Among these

factors are: accuracy of the chart representation of the flow, length

of period between synoptic charts, the flow patterns themselves and

4



September 1956 AWSM 105-47

... their behavior, the time available for trajectory construction, and the

desired accuracy of the trajectory. (See 1.15 for choice of method.)

There is another avenue open for constructing constant-pressure

trajectories. This is the dynamic approach. The horizontal motion

(acceleration) of an air parcel is determined by the magnitude and di-

rection of the horizontal pressure force acting on it and by the Corio-

lis force. In addition, the vertical motion of the air through the

pressure surface turns up as an influencing term when we pass from con-

sidering the horizontal motion of an air parcel to considering the

horizontal motion of a constant-pressure balloon. This vertical motion
influence has to be neglected since we as yet have no means of charting

the vertical motions; furthermore, it can be neglected with a fair

approximation. The magnitude of the errors which may result from this

is discussed in paragraph 2.1.2.

' ~The Coriolis force depends on the instantaneous velocity of the

A air and latitude. The pressure force can be measured from contour

charts. Hence, if the initial position and velocity of the balloon is

J i known, the future path and velocity can be determined from the contour

gradient through which it moves.
( The only two practical dynamic methods which have been proposed to

date are the Franceschini-Freeman Method and the AWS Method described in

sub-sections 1.12 and 1.13, respectively. Dynamic methods in general

are discussed in sub-sections 2.1.1 through 2.1.9.

1.5. Special Requirements Imposed on Analysis and Forecasting.

When analytical and prognostic charts are being prepared for use

in trajectory computations, they must be prepared with this special
purpose in mind. Errors of analysis and prognostication will affect

the trajectory forecast differently than they will affect, for instance,

the forecast winds for an aircraft flight. When forecasting for an

aircraft flight, the main concern is to make the mean vector error of

the forecast along the track as small as possible. In light winds the

wind direction may well be 180 degrees off without materially affecting

the planned flight. This is not the case for air trajectories. If the

balloon floats in an area of light winds and the computed direction is

wrong by a large amount, the balloon will gradually drift off in a

direction opposite to the one expected and may get into a stronger air

current of a direction entirely different from that of the forecast

5
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trajectory.
This example illustrates the need for all possible care to get an

accurate analysis and prognosis of the wind field (when kinematic meth-
ods are used) or of the contour field (when dynamic methods are used)
at each individual point in the general region of the expected trajec-
tory.

1.5.1. Kinematic Methods. When kinematic construction methods are

used, the primary concern is .to obtain a correct representation of the

wind field. To get a correct contour field is only a secondary object.

The contour field is important only insofar as it may serve to give,
estimates of the wind field through-approximations such as the geostro-
phic wind, gradient wind, or other wind-contour relationships. Such

estimates are necessary wherever the wind observations alone are not

dense enough to define the wind field. Oly over limited regions of
the chart are the wind observations dense enough to permit a direct wind

analysis; and even in these regions, height values have to supplement
the analysis at levels above 200 mb where wind observations become

sparse.
In ordinary analysis work both winds and pressure heights are used

in a complementary way to draw the topography of constant-pressure sur-
faces. Increasing reliance is placed on wind reports and less on
height reports with higher levels, since the errors in the pressure

heights increase about linearly with height. In addition to contour
analysis, isotachs are often entered on the charts to give a better

definition of the wind-speed field when the data warrants such a speci-

fic definition.
Over a fairly dense network as in the United States and Western

Europe, isotach analysis should definitely be added to the analysis to

help define the wind field as well as possible. On prognostic maps the

contours may be used as streamlines since in prognoses it is usually
not possible to distinguish between the directions of streamlines and

contours. Streamlines should be drawn for the purpose of hindcasting
trajectories, preferably by the Sandstr~m technique.

To permit an accurate streamline and isotach analysis the winds

must be plotted with a protractor and the direction and speed entered

in numbers. Ttis is a requirement for trajectory work in sparse-data

* regions also.
The isotachs should also be carried on the prognostic charts for 7)

6
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up to 24 hours. Beyond 24 hours it is doubtful if anything be achieved
by carrying isotachs on the prognostic charts.

In a somewhat less-dense data region, e.g., the North Atlantic
Ocean, isotachs may also be entered on the constant-pressure analysis
from 300 to 150 mb. Since wind reports at these levels are far apart,
the analyst has to rely on his experience of associating the isotach
patterns with the lower, better documented levels. Above 150 mb the
speeds again decrease so that they can be represented with the accuracy
of which we are capable by means of contours.

In regions of limited data coverage the flow analysis hinges on
height reports to a large extent. The question here arises as to what

p relationship between height field and wind field should be used.
Hughes et al [16] investigated empirically various methods for com-

I,, puting upper-level winds from constant pressure charts.
The authors recommend that Lambert conformal projections be used

in such computations since the curvature of a line on the map will then
closely approximate the geodesic curvature of the line on the earth.
Using for instance a polar stereographic projeetion the difference be-

; (tween the real and the measured curvature ca. theoretically result in
errors of 20-25% in the computed wind in the jet region.

The authors found that the gradient speed is a better approxima-
tion to the observed speed than the geostrophic speed in areas of
cyclonic curvature of the contours; in anticlyclonic curvature the gra-
dient speed is not an improvement on the geostrophic speed; in fact,

the geostrophic speed was somewhat better.
It was further attempted to reduce the differences between com-

puted and observed wind speed by taking into account the speed of the
pressure system. The results of this attempt, however, were inconclu-

sive. Hence, until it has been shown that a significant Improvement on
the simple gradient wind computation is effected by correcting for the
speed of the pressure system, it is recommended that the straight gra-
dient wind be used in cyclonic curvature of the contours.

In anticyclonic curvature of the contours the geostrophic wind

should be used if it is less than 40 knots. If the speed is greater

than 40 knots, add 20% to it. This is entirely an empirical correction,
but by applying it to their sample the authors found that the accuracy

of the computations in the anticyclonic cases became comparable to that
of the cyclonic cases. The errors were less than 10% of the observed

S wind speed one-third of the time and less than 30% two-thirds of the

time.
i . -;.
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Several authors have attempted to find a more accurate wind-contour

relationship than the gradlent wind, including factors such as speed of
the pressure system, spreading or tightening of contours, confluence or

diffluence of contours, etc. Perkins' (241] Central Wind Solution is
from a theoretical point of view probably the most satisfactory formula

that has been proposed. It appears, however, that the difftculties in-
volved in measuring the quantities involved from upper air maps are so
great that only the crudest effects such as that of the cyclostrophic
correction are worth including in practical computations. This was the

condlusion arrived at by Gustafson [14] in a study on wind-contour
relationships.

To sum up: In cyclonic curvature of the contours the gradient wind

should be used. In anticyclonic curvature the geostrophic speed should
be used when it is less than 40 knots. When it is more than 40 knots,

add 20% to the speed.
For computation of the gradient wind see AWS Manual 105-32. Ora-

dient wind scales for various projections and map scales have been

issued as AWS Form 32 (A-P). They are to be used with the tables in
AWS Manual 105-32.

.5.2. Dynamic Methods. When tjajectories are to be constructed by
dynamic methods, for instance by the Air Weather Service Method, the

analysis (or prognosis) should aim at an accurate representation of the

contour field. Wind and height reports both have to be used in a com-
plementary way In the analysis, particularly at high levels where the

height reports become unreliable. The primaiy object iS now the con-

tour field; the wind field is a secondary object and it serves to help
determine the contour field. In this determination the wind-contour

relationships recommended in the previous paragraph are used in reverse.

In cyclonic flow, space the contours so that the observed wind becomes
the gradient wind determined from the contour spacing and curvature.

In anticyclonic flow, space and contours geostrophically if the ob-

served wind is less than 40.knots. If the observed wind is more than

40 knots, reduce it by 20% and space the contours to agree geostrophi-
cally with this reduced speed. (The reduction should be 1/6 or about

17% to get full consistency with sub-section 1.5.1, but the difference

between 17 and 20% is here immaterial.)

1.6. Petterssen's Method. 1 :

8
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Petterssen (25] (see footnote to sub-section 2.2.2) has suggested a

procedure of zuccessive approximations whereby we can construct the

trajectory during a period T from flow charts at t = 0 and t = T.

The method is based on the assumption that the particle has a con-

stant vector acceleration during the period. In this respect Petters-

sen's method differs from the other kinematic methods described below;

these are essentially based on some simple assumption of how the flow

field at time t =0 is transformed into the flow field at time t =T.
For a further discussion of Petterssen's method see sub-section 2.2.2.

In Figure 1, Pc is the initial point at time t = 0. We measure

the velocity at this point on Chart 0 and denote this velocity by

v(o, 0) which is the velocity at point 0 and time 0. This velocity

times the period to the next chart, Chart T, is T v(0, 0) This vector
is set off from P0 equal to r o. Next, we measure the velocity at

00 0
point A on Chart T, v(r^, T) which is the velocity at point r at time

T and set off a vector P0 T v(to  T). The midpoint of ABo is P

and represents the first approximation to the trajectory terminal. If

the velocity at P] on Chart T is equal to the velocity '(o T) within

the chart accuracy, the computation can stop here, and P1 is the desired

terminal. If not, the velocity at P1 on Chart T, v( r , T), multiplied

by T, is set off as a vector, T (Ji T). The midpoint of AB1

is P2 and is the second approximation. The velocity at P is compared

with the velocity at PIV both on Chart T. If this time the velocities

agree within the chart accuracy, P2 is the desired terminal; if not,

the process can be continued and the points Pl. P2 - ... will usually

6, converge upon a point Pn so that the velocities at Pn and P n-i finally

become identical when "n" is chosen sufficiently large. Usually the

second approximation P2 will come so close to Pl that we cannot deter-

mine any difference in the velocities at the two points on Chart T. and

P will be the terminal of the trajectory.

Once the terminal of the trajectory is located, the trajectory can

be drawn in by making it tangential to the velocity at P on Chart 0,

and tangential to the velocity at the terminal on Chart T.

1.7. The Central Tendency Method.

In this method it is assumed that the instantaneous flow depicted

by a synoptic flow chart is valid for a period of 12 hours, i.e., from

6 hours before until 6 hours after map time.

A9
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Figre .*Petetsens Mtho o Sucesiv
Aproiaton.Obet tat a a tmI=0

P 0 0

T is the period between two consecutive synoptic

charts. ~,~ 2 '..' are position vectors

from Po . v(O, 0) is the wind at point 0 (P)on

Chart 0, 'vri T) is the wind at rion Chart T,

etc. Pi and P2 are the first and second approxima-

tions of the trajectory termiinal at time = T.

*NOTI&I Double-lined (bold-faced) letters are used in the ±riguves to designate vectors,
e.g., V in the text is the same as V in the figures.

10



September 1956 AWSM 105-47

The flow chart may be a contour chart, an isotach and streamline

chart, or a combination of the two methods of flow representation where

the contours are taken as streamlines and isotachs are added to give a

better definition of the speed field.

Figure 2 shows a trajectory constructed for a period of 24 hours

by the Central Tendency Method. The balloon, supposed to float at

300 mb, starts out at point A at 21Z, 11 February 1953. The 300-mb

chart for 03Z, 12 February gives the trajectory from A to B. In this

const. -tion the contours were taken as streamlines, and the speeds

were estimated from the contours by applying the curvature correction

as outlined in sub-section 1.5. The subsequent chart at 15Z gives the

trajectory from B to C. Kinks in the trajectory where the maps join,

as at B, will usually occur when the flow patterns have moving waves.

The kinks should be smoothed out as indicated by the dashed line.

120 110 100 90t~ i8 701

98

40O _ 00-N. / 40-- "
96"o_

/ 98

TRAJECTORY

02 0T0RS C0 M

ooz 3Z 6Z021

120 0 4

10090

Figure 2. The Central Tendency Method.

The Central Tendency Method is probably the most commonly used
method. It is rapid and gives an over-all accuracy that compares

favorably with other methods.
The flow field to be used with the Central Tendency Method for

11
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forecasting or hindcasting individual trajectories should, of course,

be the best one available. In this respect the considerations in sub-

section 1.5 apply. The method will for obvious reasons work best when

the flow patterns are fairly stationary. When rapidly moving closed

circulations, troughs, or ridges occur near the trajectory, the method
may give seriously erroneous trajectories. This difficulty can be

overcome by interpolating intermediate maps of the area where the tra-

jectory encounters such flow patterns. One interpolation between the

12-hourly maps (each map valid for 6 hours) will reduce this error con-

siderably.
For climatological studies on trajectories the Central Tendency

Method used with the geostrophic flow will give sufficiently accurate

answers. For most climatological estimates the Central Tendency Method
may be extended to 24 hours and thus reduce somewhat the time required

for the study.

P 1.8. Consecutive Streamline Methods.

IThese methods, as the name implies, utilize streamlines, on consec-

utive charts. There are several variants of them. Two of them which
4 were described by Macnta [18] are illustrated below.

In Figure 3a, P is the initial point on the trajectory at time h,
0

the map time. Follow the streamline through P0 on Map h for 12 hours.

The speed will usually be variable so it is advisable to proceed in

3-hourly steps by means of a displacement scale. If the speed is given
by contours, the Geostrophic Displacement Scale described in sub-section

1.10 may be used. If the speed field is determined by isotachs, the

special 3-hourly displacement scale for various speeds should be used.
(It is recommended that this be entered on the Geostrophic Displacement

Scale.) We thus arrive at point QI" Similarly, we follow the stream-

line through P on the following chart, Chart h + 12, and arrive at

point Q2. The midpoint P of QI is the terminal of the trajectory.

The trajectory is drawn by starting out from P0 tangential to the

streamline at P0 on the Chart h and ending up tangential to the stream-

line through P on Chart h + 12. The process is continued for as long

as desired. In Figure 3b another variant is illustrated. Q is ob-

tained as in Figure 3a. The streamline through Q1 on Map h + 12 is

then followed backwards for a distance of 12 hours to arrive at point

B. Vector B1 is next set off from P0 equal to ' Midpoint P' of

4',
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QIQ2' is the terminal of the trajectory. The trajectory is drawn as in
Figure 3a.

A third method is described in AWS Technical Report 0-62, June

1950. The various consecutive streamline methods will usually give
slightly different results, but from principle there are no reasons to
prefer one to another.

1.9. The Linear Interpolation Method.

This method is based on the assumption that the wind at a point
changes linearly with time.

-The trajectory is constructed in 3-hour steps, as illustrated in

Figure 4. The construction is explained in the legend.
t For the theory of this construction, see sub-section 2.2.4. The

proportionate parts to be used for intervals other than 3 hours can be
found from a formula in that sub-section.

1.10, The Relative Trajectory Method.

If the flow pattern maintains its shape and intensity but moves
across the map, trajectories can be obtained by the Relative Trajectory )
Method.

The method is based on the fact that if we observe the flow from a
coordinate system that follows the motion of the pattern, the flow will
* appear non-changing with time, and the relative trajectories (i.e.,
paths of air parcels described in this system) and relative streamlines
(i.e., streamlines in this system) will coincide. The relative veloc-

4, >*
ity which would be measured is v - c. Here, v is the motion relative
to the earth and is, of course, the one plotted and analyzed on the
map; a is the velocity of the pattern.

If the v field is represented by contours, the relative velocity

field, v - 0, is found by adding a fictitious contour field represent-

Ing -c to the basic contour field. The -c contour field consists of a

set of straight and parallel lines whose equidistance and labeling is
determined such that the field represents a geostrophic wind equal to
-C,

Next, the motion of the balloon is followed in this relative-con-

tour field by proceeding from the initial point parallel to the rela-
tive contours with a speed which is determined by a geostrophic wind

scale from the distance between adjacent relative contours. In this

14
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3 (0 O,) 114'

and i t 4e pe3
/ ' , '34,

Figure 4. Construction by the Linear Interpolation Method of the Tra-
jectory from Po0 to P During a 12-hour Period. The period is divided
into "four 3-hour periods. The vectors (set off from P 0) , rl, r 2Y r 3,
and r 41 indicate the positions of the balloon after 3, 6, 9, and 12

hours. The vectors r2, r3, and r4 have not been entered in the Figure,

but the symbols r2, r3, and r4 are entered at the position of the head

of these vectors. v(O, 0) indicates the wind at P0 on Chart 0,
+(o, 12) is the wind at P0 on Chart 12 (12 hours after Chart a),

vr O, 0) is the wind at point r, on Chart 0, etc. 3V(0, O) is the

3-hour wind travel with the wind v(0, a) set off as a vector on the
chart, etc. First, the vectors 3v(O, a) and 3 (0, 12) are set off

from P0, the st,rting point of the trajectory. The end points of these

vectors are connected with a straight line. This line is dissected in
the ratio 1/8 to 7/8, thus locating the end point of vector rI as in-

dicated in the Figure. Next, the velocity at this point is measured on
Chart 0 and on Chart 12, and the 3-hour wind travel with these veloci-
ties are set off as vectors. These vectors are 3v O) and 3'(' ,, 12)

respectively. The connecting line between the end points of these
vectors are dissected in the ratio 3/8 to 5/8, thus locating the end
point of r2. The winds at this point on Charts 0 and 12 are measured,
the 3-hour wind travels set off, and the procedure is repeated.
The ratio is this time 5/8 to 3/8, and the last time the ratio is 7/8
to 1/8, computed from the end point of the wind travel on Chart 0.

15
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mnanner we can determine the relative position of the balloon at any @

time we desire.

The position relative to the earth, or the chart position, is found

by adding the displacement of the system during the elapsed time to the

relative displacement.

The construction is illustrated by some examples. In Figure 5

the velocity field, v, has concentric circular streamlines (contours)

and the speed is constant, determined by the geostrophic spacing be-

tween the contours. This rotating field moves from left to right

r across the map with a velocity c. This translational speed is here

..chosen equal to the wind speed, but that is not essential. The contour

* field given by the dashed lines represents -c. By graphically adding.

the two contour fields the relative velocity field, v 0, is obtained.

The chart trajectory of a particle starting out at point A and time

U7
"I.

34

CONTOURS OF V
------------------------------------CONTOURS OF-C

CONTOURS OF V-C
5' (RELATIVE TRAJECTORY AND
S== =RELATIVE POSITION OF PARTICLE

~AT TIME To$
__.__5 (CHART TRAJECTORY AND CHART

POSITION AT TIME T,5

Figure 5. Trajectory by the Relative Trajectory Method. A circular
vortey of uniform speed moves to the right with constant speed L. The

A relative trajectory and the chart trajectory, starting from a point A,
are indicated. acs gp

16
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t 0 Is computed. The double-dashed line is the relative trajectory

and the relative positions, marked 0, .', 2' ... , are computed in

steps at time t 1 1, 2, ... by measuring the varying speed with a geo-

strophic wind scale from the relative contours. Next, the succession

of points which form the chart trajectory is obtained by setting off

vectors c, 2c, 3C ... from the points 1', 2', 3', .... In Figure 5

this is shown for time = 5. In this manner we arrive at points 1, 2,

3 ... , and the line joining them is the chart trajectory.

A second example resembles more the patterns on actual weather

maps. In Figure 6 the contours represent a detail of a 300-mb map.

Let us assume that the best prognosis possible is a simple translation

of this contour field with a velocity C indicated on the map. This

velocity c might have been obtained from comparison with an earlier map.

Two trajectories have been computed, one which starts from a point

in the center of the low (point A) at the time of the map (t 0) and

one which starts from point B in the westerly flow north of the low.

The top diagram shows the construction of the relative flow field,

v - c, and the computed chart trajectories. In the bottom diagram the

relative flow field is repeated, and the construction of the relative

trajectories and the chart trajectories is shown in detail.

In the bottom left-hand corner is a diagram of a Geostrophic Dis-

placement Scale which is convenient to use for trajectory computations.

The ordinate is the displacement per time unit. A convenient time unit

to use for high-level trajectories is t = 3 hours. The abscissa is the

contour spacing. By transferring the contour spacing from the chart to

the displacement scale by means of a pair of dividers, the 3-hour tra-

vel of the object is set in the dividers and in turn spaced off on the

map. In the diagram the isoline for only one latitude has been shown.

The isolines are all equilateral hyperbolas. The scale is analogous to

a geostrophic wind scale. Instead of showing the speed as a number it

gives the 3-hour geostrophic travel as a distance. It is recommended

that the scale be constructed locally for the map projection and map

scale used.

The auxiliary contour field representing -c may be prepared per-

manently as a set of templates containing straight parallel lines with

the spacing varying from template to template. For a given system

motion c and a given latitude the template giving the best spacing canabe selected. The spacing on the template may be identified by a number

which is entered on the Geostrophic Displacement Scale. Enter the

17
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Figure 6. Trajectories in the 300-mb
Surf'ace Computed by the Relative Trra-
jectory Method.
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ntumbers along the abscissa such that - when we enter the Geostrophic

Displacement Scale with the 3-hour travel of the system as ordinate, go

right to intersection with proper latitude, and down to intersection

with the abscissa - the nearest number will select the correct template.

A set of 8 templates with spacings for 5, 10, 15, 20, 25, 30, 40, and

;-0 knots at 40°N will suffice.

The Geostrophic Displacement Scale should be standard equLpment

for trajectory work. On it may also be marked 3-hour travel for various

speeds to be used in conjunction with isotach charts. It will then be

useful for all kinematic methods.

1.11. General Mills' Standard Objective Method.

This method may be considered as a version of the Relative Trajec-

tory Method. The assumptions underlying the two methods are the same:

The flow pattern does not change shape or intensity but is merely

translated with constant speed across the map.

Instead of getting a continuous trajectory, as by the Relative Tra-

jectory Method, this method constructs the trajectory in 6-hour steps,

the flow being assumed stationary during each 6-hour interval.

Figure 7 illustrates the method. The flow pattern, given by the

streamlines and isotachs, moves toward the right. The 6-hour travel of

the pattern is indicated by the arrow above the pattern. The balloon

starts out at A at the time of the map. The balloon displacement dur-

ing the first 6 hours is the line segment, AoAI , found by going first

left from A a distance equal to the 3-hour travel of the pattern to a
0

point B1 and proceeding from there for 6 hours along the streamline

through B1 with a speed given by the isotachs to arrive at point C1 .

The line segment B1 C1 is then transferred parallel to itself to A and

set off as AoA,; A1 is the position of the balloon after 6 hours. Next,

we go left from A1 for 9 hours (or what is the same, left from C1 for

6 hours), construct the new line segment B2 C2, transfer this segment

back to A1 , and arrive at A2 which is the location of the balloon after

12 hours. In this manner we can proceed for as long as we desire. The

construction, of course, will only be valid for as long as the basic

assumptions hold, i.e., the pattern is permanent and moves with con-

stant speed. A variable speed of the pattern may be introduced in the

system by altering the 6-hour displacements to the left as we see fit.

Instead of transferring the line segments BIC I , B2C2, etc. to the

19
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6 HOUR MOTION C7
THE FLOW PATTERN

B4' .

N '

f- STREAMLINES

-- - ----ITACHS

m TRAJECTORY

kFigure 7. A Trajector Computed by the

~General Mills' Standard Objective Method.

P : .right, it is more convenient to construct the trajectory on a trans-
,:. parent overlay and move the overlay in the opposite direction to the

L. motion of the system, (i.e., to th left in the case above) a 3-hour
displacement for the first 6-hour trajectory interval and an additional
6-hour displacement to the left for each of the subsequent 6-hour in-

tervals.
When the patterns have strong streamline curvatures or strong wind

shears, it may be advisable to shorten the steps to 3 hours. In fact,
the shorter the steps the more will the traJectory resemble the con-
tinuous trajectory obtained by the Relative Trajectory Method.

The advantage of the General Mills' Method over the Relative Tra-
Jectory Method is that it is independent of the manner in which the
flow is represented. It works equally well with a contour as with a .'
streamline and isotach representation. Construction of the relative

20
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( flow field needed for the Relative Trajectory Method is a tedious pro-

cedure when the flow Is determined by streamlines and isotachs. as the

relative flow field has to be analyzed from vectors obtained by adding

veetorially two vectors point by point. Only when the flow is given by

contours (stream functions to be exact) is the Relative Trajectory.

Method more rapid and probably also more accurate than the General

Mills' Method. It is emphasized here again that when the Relative Tra-

jectory Method ii used, Lhe contours should be drawn to fit the winds

(geostrophically) rather than the height reports. This is the usual

practice anywayr when analyzing high-icvel contour charts, since the

height reports become increasingly more inaccurate as we proceed up-

ward in the atmosphere. (Sub-section 1.,).

The General Mills' Method and also the Relative Trajectory Method

are preferable to the Central Tendency Method or the Consecutive

Streimlines Method when the trajectory passes near fast or moderately

fast-moving features of the flow that possess marked streamline curva-

ture or shear, e.g., highs lows, ridges or troughs, and jet streams.

Very often the best estimate that can be made of the future behavior of

such systems is an extrapolatod (on proGnostic maps) or interpolated

(when hindcasting) translation of the pattern without altering its

shape and intensity. For these cases the Relative Trajectory Method or

the General Mills' Method will give the best trajectories.

1.12. The Franceschini-Freeman Method [9].

This is a dynamic method. Required for the computation are the

initial wind and position when the balloon reaches the intended float-

ing pressure, and contour charts of this pressure surface at 12-hour

intervals for as long as the trajectory is desired.

The Coriolis force, which is given by the balloon velocity, and

the pressure force, which is obtained from the contour charts, will

each try to deflect the path of the balloon, the Coriolis force to the

right (in the Northern Hemisphere.) and the pressure force toward lower

contours. The resulting motion of the balloon is computed in 2-hourly

steps by means of a "Displacement Nomogram." This Nomogram, shown in

Figure 8, is valid for all map scales and projections. The time inter-

val of 2 hours cannot be changed.

Nu .21
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10

NOMOGRAM FOR DISPLACEMENT COMPUTATIONS
(VALID FOR ANY MAP SCALE OR PROJECTION) 9

6

4

3

0/310 I_ I_ T_ _ __ _ _-

10 2<,7-00
GF~d 00 a-

a 0 6
4 0 o 3 0 .0

0 B~~ASE SCALE (initial velocity) 1
9 1 GN 5N 4N-, 3 2\600
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Figure 8. Nomogram for Computing the Displacement and F'ina. Velocity
of an Air Pa~rcel After a 2-hour Interval. (After Franceschini and
Freeman.) 0 is the origin. See text for instruction on use.
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1.12.1. Stepwise P rocedure for Constructing the Trajecto-y.

a. First Time Interval.

(1) Find the climb displacement as explained In paragraph c

below and adjust this to the nearest multiple of 2

hours as explained in paragraph d below. The point ob-

tained is the adjusted initial position.

(2) Determine the initial velocity v0 as explained in e be-

low. Set off a vector 2 hours X v. to scale on the

base map or on a transparent overlay from the adjusted

initial position.

(3) Determine the average geostrophic velocity 1g over the

interval as explained in f below. Set off a vector 2

hours x g to scale from the. sare origin as in (2)

above. Only the terminals of 2,o and 2 need be in-

dicated.

(4) Place the Displacement Nomogram as follows: the origin

at the terminal of 2V0 and the Vertical Scale passing

through the terminal of 21. The Nomogram now remains

fixed for steps (-) and (6 .

(5) Note the value of the terminal of 2 on the Vertical

Scale. This is 12(z0 - 4g )i on an arbitrary scale.

(6) Enter with the value of (5) and the proper latitude (at

midpoint of 2 0) the Displacement Grid of the Nomogram.

The intersection of the isolines locates a point. This

point is the terminal of the computed trajectory for

the first interval. Mark this point on the map or a

transparent overlay.

b. Second and Subsequent Intervals.

(1) Determine a new initial velocity displacement for the

second interval by using the points from the first in-

terval as follows:

(a) Using the Vertical Scale measure the distance from

the point determined in step (6) above to terminal

of 2V.
(b) Place the Nomogram as follows: the origin at ter-

minal of 2v 0 and the Vertical Scale parallel to

the distance measured in step (a) above. In the

grid below the Base Scale locate the intersection

* 23
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of the proper latitude line and the sloping iso-

pleth of the value in (a) above. Mark on the Base

Scale the projection of this intersection point on

the Base Scale.

(c) The line from the initial point of the preceding

time interval to the point marked in (b) above re-

presents the initial-velocity, displacement for the

second interval. Set off this vector from the nd
point of the first trajectory segment as in a(6).

(2) Determine the average geostrophic-velocity displacement

Vfor the second interval as explained in paragraph f be-

low. Set off this vector from the same origin as in

b(1)(c) above.
V (3) The following steps are now identical to steps a(5) and

a(6).

.(4) For subsequent intervals proceed as for the second in-

terval using the points of the previous interval to

compute a new initial velocity displacement for the in-

terval. The trajectory terminals are marked on the

base map with proper time indications as we go along.

c. Climb Displacement and Time at Altitude. The climb displace-

ment can be computed when the time of release and the climb rate of the

balloon are knowm.
(1) We first compute the climb vector. It will be suffi-

ciently accurate to use the winds at 10,000-ft inter-

vals. For example, if v2' . etc., denote winds at

2000, 10,000 feet, etc., we have the following for the

climb vector to 300 mb:

2x ! 2 v 10  V20  v20

2 2 2

(2) From this expression for the climb wind, an easy con-

struction on AWS-WPC-10-4 follows. The construction is

illustrated by the following example. v2 3200 20

knots, vlo -3000 35, v20 = 2700 50, v3 0  2500 60.
The points A, B, C, and D of Figure 9 represent v2,

, 2v20, and v30' respectively, plotted on AWS-WPC-
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10-4+. Midpoints of AB and CD are E and P and represent
an ~(~ v) respectively. Mid-

point of Sj n 0 36 is andrepresents half the sum of these
vectors; the climb vector v is 2/3 of Od

() similar construCtions can be found to 200 mb and other

surfaces.

3300
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(5) The time when the balloon first reaches altitude is, of

course, releas. ;iy!,e plus the climb time, zS minutes.

d. Adjustment to Nearest 2-.ourl~r Interval. Since the ,omputa-

tions are carried out in 2-hourly steps, it is convenient to start from

the position of the balloon at a time which'iz a multiple of 2 hours,

i.e., OOZ, 02Z, 04Z, etc. If, for example, the balloon is computed to

be at altitude at 0130Z, move it on with the wind at altitude (see e

below) for another 30 minutes and obtain the position at 020OZ. This

is the adjusted Initial position.

e. The Initial Velocity. It is important to determine the wind

accurately.

(1) If rawins from the release point taken a few hours

prior to release are available (up to 6 hours before),

these should be used.

(2) If no rawin observations are taken from the release

point or if these are more than 6 hours old, the initial

!ind should be obtained from an extrapolated streamline

and isotach analysis in the area of the release point.

If no winds or very few wind reports appear on this

analysis, winds have to be estimated from the contours.

The correction for curvature of the contours should

then be used in accordance with sub-section 1.5.

(3) If the trajectory forecast is not needed prior to re-

lease and the balloon is tracked for the first few

hours, the initial wind may be obtained from che first

part of the trajectory.

f. The Average Geostrophic Velocity for an Interval. This

should properlQ, be the time-space average over the appropriate trajec-

zory se-ient; but since the trajectory is not known at the outset, use

as an approximation the average geostrophic wind over the initial vel-

ocity displacement, 2v0 .

(1) The geostrophic wind field for intervals between the

map times 03Z and 15Z may be obtained by a time-

linear interpolation between the two successive charts

bracketing the interval. The intervals may be numbered

as indicated:

Zero Interval 02Z-OkZ

ist i 04Z-O6Z
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2nd Interval 06Z-08Z (determined from the

3rd "08Z-10Z 03Z and the following

4th 1OZ-12Z 15Z charts)

5th "12Z-14z

Zero 14Z-16Z (determined from the

ist 16Z-18Z 15Z and the following
etc. 03Z charts).

The change of the geostrophic wind is given by the
7 12-hour height-change chart. Since the gradients of

this chart vary less than the gradients of the contour

'S. chart, it will generally be a good enough approximation

to use a constant geostrophic wind-change over an inter-

val. If we denote the 12-hour geostrophic wind-change,

measured at the midpoint of 2V,) by civ the geostro-
phic wind-change for the interval will be zero for a
zero interval, 1/6 A for a ist interval, 2/6 av for

g 9
a 2nd interval, etc. This change vector is then addedk
vectorially to the average geostrophic wind over 2vo
measured from the basic contour chart. As an example,
Figure 10 illustrates how to find the average geostro-

phic wind for the interval 08Z-lOZ (3rd interval),

f - 3 August.

In the Figure the initial velocity displacement, 2Fo,
is set off to scale from the ini.tial point A. This is
At. We measure the geostrophic wind at A, v(A) =0• " ! at , g( ) =  -(A)
and at B, Vg(B) B vg(B) is set off from C equal to
C. At midpoint M of A the 12-hour geostrophic wind

change A4g is measured from the height change contours.

The average geostrophic wind change over At during the
period from the basic chart at 03Z and the mid-time of

the interval, 09Z, is then 3/6 Av However, we want
the 2-hour displacement with the average geostrophic
velocity; therefore, set off 2 x 3/6 av from D, equal
to D-2. At is now the desired 2-hour displacement 2Vg
computed from the formula A 2 x (V

computed 4 (A) + vg(B) +
3/6 A E]. This vector addition is best performed on

4I AWS-WC-IO-4 or a similar hodograph.
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294 -

M V, 300

+2 2%

~ ~rrn~.L,.~gw302

0 - CONTOURS AT 03Z 3 AUG.
--- HEIGHT CHANGE CONTOURS

FROM 03Z TO I5Z 3 AUG.
(100'S OF FEET)

Figure 10. The Mean Geostrophic Displacement Velocity
for a 2-hour Interval.

(2) An alt,&rnate method which requires less time is to use
a separate linear time interpolation f'or the direction
and the speed of'Kthe geostrophic wind at point M.

Example: Geostrophic Wind at point M at O3N:
2600 4f0 knots
Geostrophic Wind at point M at 15Z:
2900 60 knots

Geostrophic Wind to be used for a 3rd interval (o8Z-
l0Z) will then be 2750 50 knots since the 3rd interval

is midway between 03Z and 15Z.
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1.13. The Air Weather Service Method.

1.13.1. Introduction. The AWS Method is a dynamic method. Needed

for construction of a trajectory are:

a. The initial velocity
b. Contour charts at 12-hour intervals

c. The AWS Trajectory Graph

d. A transparent Polar Diagram (similar to AWS-WPC-10-4).

The AWS Method and the Franceschini-Freeman Method, both being dy-
namic methods, have several points in common. They both require an

initial velocity of the object at the beginning of the computation

period and the pressure distribution during the period. In the Frances-.

chini-Freeman Method' the. computation period is 2 hours. In the AWS
Method, it is 12 hours or, occasionally, 6 hours. The advantage of the

latter method is that it is quicker since the computation period is
much longer; also, it is believed to be somewhat more accurate and less

tedious to apply since it avoids working with small'displacement incre-
ments.

A basic assumption underlying the AWS Method is ,that the geostro-
phic wind vector, which follows the object, changes linearly with time
during the computation period. The period is 12 hours in regions of

the map where the space variations of the geostrophic wind are moderate
or small (about 9 knots or less per latitude degree of progression) and
6 hous where this variation is large such as it will be near marked
troughs or ridges surrounded by strong contour gradients. The trajec-
tory terminal is found by a procedure of successive approximations
reminiscent of that used by Petterssen (see sub-section 1.6). For the

theory of the AWS Method see sub-sections 2.1.7 and 2.1.8.

Sooner or later, the future will see trajectories traced by elec-

tronic computers. When it becomes possible to simulate the behavior or

upper-air presrure patterns (300 mb, 200 mb, etc.) through numerical

prediction, the programming of the computer for obtaining dynamic con-

etant-pressure trajectories as a by-product is a relatively simple

matter.

1.13.2. The Polar Diagram. The Polar Diagram (Figure 11) is used as

an overlay on the AWS Trajectory Graph to compute the displacement dur-

ing the computation period and the object velocity at the end of the
tcomputation period. These computations are made from the known geostro

phic velocities at the beginning and at the end of the trajectory
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30 330

20 340

10 0 340

Figure 11. The Polar Diagram.

segment of this period. It is recommended that zhe Polar Diagram be

prepared locally on transparent material.
If a Lambert conformal projection is used for the oontou maps,

the distance between consecutive concentric circles corresponding to a

10-knot speed increment should be made equal to 2 latitude degrees at
the standard latitude of the maps used. Thus, displacements and veloc-

ities can be treated interchangeably for a computation period of 12
hours since the displacement during a 12 hour period of an object mov-
ing at 10 knots is 2 latitude degrees. If the computation period is

reduced to 6 hours, the displacements are halved. This is possible be-

cause the scale of the Lambert conformal projection (true at 30*N and

30



September 1956 AWSM 105-47

600N) varies only insignificantly between 650N and 250N.

If a polar stereographic projection is used in chart work, veloci-

ties and distances can no longer be treated as equivalents because the

length of a latitude degree varies by about 40% between 650N and 250N,

our main area of interest. The Polar Diagram will, however, still give
true displacements in latitude degrees, 2 degrees for, every 10 knots of
speed on the diagram for a 12-hour period and 1 degree for every 10

knots for a 6-hour period. The correct length of the displacement to
be set-off on the map is then the length of the number of latitude de-

grees indicated by. the speed, measured at the mean latitude of the tra-

*jectory segment. When the polar stereographic projection is used,
there is no longer any specific advantage in constructing the Polar
Diagram by the formula: 2 latitude degrees,- 10 knots. Any reasonable

distance between the circles can be used. Since the AWS-WPC-10-4 is

available, this may be used.

1.13.3. The AWS Trajectory Graph. This graph (Figures 12a and b)
contains 2 diagrams. The left one computes displacements during a 12-

hour (or 6-hour) period, and the right one computes the velocity at the

end of the 12-hour (or 6-hour) period. This final velocity becomes, of

course, the initial velocity for the next computation period.
The scale of the graph is arbitrary as only the configuration is

of consequence. It may be reproduced on any scale. The scale repro-

duced in this Manual is too small for practical use with ordinary
weather charts (scales equal to or larger than 1:20,000,000). A separ-

ate print of the Graph on a larger scale (large enough for scales up to

1:10,000,000) is available for field use as a separate item (AWSM 105-

4I7A).

1.13.4. Choice of Computation Period. The computation period is

either 12 hours or 6 hours. Which period to use depends on the space

rvariation of the geostrophic wind on the contour map at the end of the
period. If this variation is less than about 9 knots per latitude de-

gree of progression (60 nautical miles in any direction) in the region

of the trajectory segment, use 12 hours. Otherwise, use 6 hours. In

the Trajectory Graph the continuous radial lines labelled for latitude
(unbracketed) are to be used for 12 hours; the dashed radial lines with

bracketed labelling of latitude are Zor 6 hours.
Incidentally, choice of too long of a computation period will

automatically be signalled by the failure of the computed trajectory
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.9

to/

9/\ ,,(30)
0 / //

6

tooa

N -

.,(40) N 2

6001

(501

Figure 12a. The AWS Trajectory Graph - Displacement.
Dashed radial lines and bracketed latitude values re-
fer to 6-hour trajectories. Solid radial lines and
non-bracketed latitude values refer to 12-hour tra-
jectories.

terminals to converge upon a stable solution; 6 hours must then be used.
When a 6-hour computation period is used, a contour map intermed-

iate between the 03Z and the 15Z maps must be sketched in the area of
the trajectory segment; i.e., if the beginning of the period is 15Z, an
intermediate map valid at 21Z must be interpolated between the 15Z and

the following 03Z map.

1.13.5. Stepwise Procedure for' Constructing the Trajectory.

32



September 1956AWMO-1.

40* _50* 01
35-

(-0 10-- -

(401~

(7 1
N B.-..-. 80')

Q.. 
36*

60'

401

50,

Figure 12b. The AWS Trajectory Graph - Final Veloc-
ity. (See legend in Figure 12a)

a. First Cornputation Period.
(1) Find the climb displacement and the time at altitude as

explained in paragraph 1..12.1.c and adjust to the near-
est 6-hourly upper-air synoptic hour (03Z, 09Z, 15Z,
and 21Z) kinematically. This is the adjusted initial
position. If the position is at 09Z or 21Z, the first
computation period is 6 hours to bring the computation

scheme in phase with the available maps at 03Z and 15Z.
If it is at 02,Z or 15Z, the period is 12 hours or 6
hours, according to sub-section 1.13i.
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(2) Determine the initial velocity o as outlined in para-

graph 1.12.l.e and enter vo as a point vo on the Polar
Diagram.

(3) Determine the geostrophic velocity 30 at the adjusted

initial position on the chart valid at this time. If

the adjusted initial position is at 03Z or 15Z, this is
done directly; if it is at 09Z or 21Z, it is interpolated

from the values on the two bracketing 03Z and 15Z maps.

Enter o as a point 0 on the Polar Diagram.
30 0

(4) Make an estimate of the end point of the trajectory for
1* the period in question and mark this point Z1 on the

contour map valid at the end of the period. Henceforth,

this map will be referred to simply as "the.oontour map."

This estimate may conveniently be the end point of the

C. T. M. trajectory (Central Tendency Method, see sub-
section 1.7). Measure the geostrophic velocity at

and mark this velocity 3i as a point G1 on the Polar
i Diagram.

(5) Place the Polar Diagram on the left diagram (marked Dis-
placement) of the AWS Trajectory Graph such that point

Go coincides with the underlying center (where the radi-

al lines meet) and the point vo falls on the vertical

axis (thick line with arrow). Read the value under v

on the axis scale. Without moving the diagrams enter
the grid (marked vo - 0) to the right of the axis with

this value for the spirals and the appropriate latitude

for the radial lines and determine an intersection point.

Mark this as point A on the Polar Diagram and draw the

vector GX. This vector remains on the Polar Diagram

throughout the period. The latitude to be used is the

mean latitude of the initial point and Z1 . (Bracketed

values of latitude are for 6-hour periods and unbrack-

eted values for 12-hour periods.)

(6) Rotate the Polar Diagram, with Go remaining on the cen-

ter, until G falls on the axis. Read the value under

10 I With this value enter the spirals of the grid

(marked - ) to the left of the axis and find the

intersection with the appropriate latitude line. Mark

this point on the Polar Diagram.
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(7) From the point determined under (6), set off the vector
'_ on the Polar Diagram. Only the end point of the re-

0
sultant need be marked. Label this point Z2 .

If Lambert conformal maps are used and the Polar

Diagram is constructed on the formula: 2 latitude de-

grees = 10 knots speed increment, proceed to (8) and

skip (8'). If not, skip (8) and proceed to (8').

(8) With its center on the initial point and 1800 pointing

north, place the Polar Diagram on the contour map. Mark

on the contour map the point under Z2 and also label

this point as Z2. Z2 is the second approximation to the
trajectory terminal for a 12-hour period. For a 6-hour

period the displacement is half of this, and the corres-

ponding terminal on the contour map is labelled Z2 .

R(8') With its center on the initial point and 180* pointing

north, place the Polar Diagram on the contour map. Z2
obtained under (7) indicates the azimuth of the second

p approximation to the trajectory terminal. The radial

distance to the terminal is set off with dividers as the
distance of the number of latitude degrees indicated by

Z2, measured on the contour chart at the appropriate

latitude. Mark this terminal Z2 on the contour chart

also. (For example, if Z is 2730 80 knots and the mean

latitude of the trajectory segment is 350N, the dis-

placement is set off on the contour chart as 2730 azi-
80muth and X 2 = 16 degrees of latitude measured on the

map as the length of 16 latitude degrees at the latitude

AP W of 350N. This is for a 12-hour period. For a 6-hour41: period the displacement will be 2730 azimuth and 8 de-
grees of latitude. A scale which allows setting off the

Rm distance directly by entering the scale with the speed
of Z2 and the appropriate latitude should be constructed

locally.)
(9) Measure the geostrophic velocity 5 at Z and mark it as2 2 admr ta

a point G2 on the Polar Diagram. If i and agree

within the accuracy with which we can estimate geostro-

phic velocities on our maps, the construction can stop

here, and Z2 is the desired terminal. For practical pur-

poses this accuracy may be taken as 5 knots or 10% of'

i2)
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whichever is highest. If 42 differa from 4I by more

than this value, proceed to (10).
(10) Proceed as under (6) and (7) with now replacing 1 in

wt02 no1elcn ii
the instructions, thereby determine Z3, and set it off

on the contour map as done for Z2 under (8) or (8'), as

appropriate.
(ii) Measure the geostrophic velocity 3 at Z3 . If 33 and 32

agree within the stated limits, Z is the desired ter-

minal and the computation can stop here. If not, pro-

ceed again as under (6) and (7), 03 now replacing G1 in

the instructions, and thereby determine Z4 . Set Z4 off
on the contour chart, 3 at Z4 is measured, etc. The

process is repeated until a point Zn is reachedon the

contour chart such that the gqostrophic velocity 3n at

this point agrees with - within the desired limits.n- 1
Usually 2 or 3 approximations will suffice.

The final velocity at the end of the first period,
which will be the new initial velocity for the next
period, is now determined by using the points vO, ,

land 4n on the Polar Diagram as follows:
(12) Place the Polar Diagram on the right diagram (marked Fi-

nal Velocity) of the AWS Trajectory Graph, such that O

falls on the underlying center and vo falls on the hori-

zontal axis (marked v - Proceed along the circle

under v to intersection with the appropriate latitude

line (brackets for 6-hour intervals). Mark this inter-
section point v1 on the Polar Diagram.

(13) Rotate the Polar Diagram with Go remaining on the center
until Gn falls on the vertical axis (marked an - ao)"

Proceed along the spiral under Gn to the intersection

with the appropriate latitude line. Mark the intersec-
tion point as v2 on the Polar Diagram.

(12) Add vI from (12) and v2 from (13) vectorially on the Po-
lar Diagram. The point arrived at represents the final

velocity of the first period and the new initial veloci-
ty of the second period. Plot this velocity as an arrow
on the contour chart at Zn. This aids in drawing the

trajectory, which is tangent to it.
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b. Second and Subsequent Computation Periods. The determination

of the displacement and final velocity during the second period is quite

analogous to the procedure outlined under paragraph a, above, except for

(1), (2), and (3) which now do not apply. The new vo has already been

found under (1.4), and the new d is d of the first period. vo and G0 n0
of the second period are again marked as points on the Polar Diagram,

and the procedure from there on is as from sub-paragraphs a(4) through

(14), above. The new i, ,2' etc., are determined from the contour

chart valid at the end of the second period at the points ZI, Z2, etc.

For subsequent periodsmthe process is again analogous to the second
period. The final velocity and d of the previous period are used each
* n
time as vo and . for the present period, and the'velocities. , 6.0 do 1 2'
etc., are read at the points Z, Z2, etc., on the contour map valid at

the end of the present period.

Finally, if desired, the total trajectory may be traced (using a

g light table) on a separate chart by transferring the terminals and

velocities already entered on the individual contour charts. The tra-

jectory is drawn tangent to the velocities at the terminals of each
period.

1.13.6. Limitations of Dnamic Methods. Theoretically, we may carry

on a dynamic trajectory for as long as contour charts are available

(analytic or prognostic). However, when the chain of constructions de-

pends on only one actual condition at the beginning of the first period

and since this condition is only approximately known, the longer the

chain the more will the trajectory depart from reality. This is par-

ticularly true in complex contour patterns. With large ageostrophic

components (-o -0 o) the trajectory takes the form of cycloids of large

* amplitude which cut drastically across the contour patterns. This is a

sign that departure from reality has been reached. An example of this

is Figure 15b of sub-section 1.14.2.
When this occurs, it is a sign that errors have accumulated to the

point that the flow pattern indicated by the trajectory is out of phase

with the contour pattern to a degree that is not realized in nature.
In nature a mutual adjustment of pressure pattern and flow pattern

occurs continuously at the pressure level in question as well as at all
other levels. This adjustment is complex since all levels are linked
together hydrostatically. At present only our experience in comparing

* ( the pressure and flow patterns on synoptic charts can tell us how far
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they can get out of phase with each other. It must, therefore, be left
to our experience to decide at which point in the chain the constructed
dynamic trajectory is no longer valid.

If we are using prognostic contours it may, of course, be the
contour charts which are in error. It has, in fact, been suggested
that the trajectory may be used to test whether or not the prognosis
is "dynamically" correct.

If the trajectory is being hindcast and winds are available on the
analytic contour charts, a new initial velocity can be estimated from

the wind field for each period. In this manner it is ascertained that
the dynamic trajectory will be reasonably in accord with the pressure

pattern.
From the preceding remarks, the impression must not be gathered

that dynamic trajectories are erroneous when they cut across contours.
Actual trajectories do in fact, cut appreciably across contours more
often than not, particularly in curved flow. Data gathered from actual
*balloon trajectories indicate that the geostrophic departures at 300 mb
are on the average of the order of 30-40% of the wind speed (see sub-
section 2.1.9).

When forecasting a dynamic trajectory, it will usually-not get un-
reasonably out of phase with the contour pattern until some time after
36-48 hours. Should unreasonable ageostrophic wind components arise,
it is best to relax the initial velocity toward the geostrophic wind,
for example, by halving the geostrophic-departure or by making the new
initial velocity entirely geostrophic.

In spite of these difficulties to which protracted dynamic tra-
jectories are subject, it is felt that when the task is hindcasting
trajectories in regions where upper-wind reports are much more sparse
than height reports, or when forecasting trajectories from prognostic
charts for up to 2 days, such methods as the Franceschini-Freeman
Method and the AWS Method have definite advantages over other methods.
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1.14. Accuracy of Constant Pressure Trajectories.

1.14.1. Statistics on Forecast and Hindcast Accuracies. Machta [18)

computed the trajectories for eleven balloon flights at 200 mb, re-

t i! leased from Ellswcrth AFB, South Dakota, and Holloman AFB, New Mexico,

during the period August 1949 to March 1950. The trajectories were

constructed by three different methods, i.e., the Consecutive Stream-

line Method (C.S.M.), the Central Tendency Method (C.T.M.), and the

Linear Interpolation Method (L.I.M.).

In Table I the distance between the end points of the computed and
RV ( actual trajectory is listed as the error. The percentage error is the

error as a percent of the actual distance travelled by the balloon.

TABLE I

Trajectory Hindcast Errors, 200 mb, 11 cases (after Machta)

Mean length of the trajectories: 865 naut. miles
Mean duration of the flights: 15Y2 hours

Error - naut. mi. Error - percent
i Method used

Mean Range Mean Range

C. S. M. 196 39 -660 28 4 - 125
C. T. M. 27 2-7835 5 - 147

L. I.M. 225 65 -696 33 7 -131

All 3 methods 219 39 -780 32 4 147

According to this Table the Consecutive Streamline Method turned

out to give slightly better results than the other two methods, but

judging from the wide range of the errors and the small sample, this

small difference is not significant. The errors for an individual

flight computed by the various methods showed very small differences.

Machta [19] also tested various kinematic methods in mathematical-

ly defined flow patterns; the differences were found to be small, the

patterns chosen were such that they gave very small errors for the tra-

jectories, far smaller than those incurred in actual practice; hence,

we cannot safely draw any conclusions for the case of actual trajec-

3 tories.
Table I gives-a realistic picture of the accuracy of trajectory
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hindcasts that can be attained with a network of observations similar
to the one that existed over the United States at 200 mb in 1949-50.
Since then, wind coverage and accuracy has increased considerably.

The Air Weather Service Bulletin for November 1952, pp. 16-19 [2),
gives the result of an AWS trajectory forecast project. Purpose of the
project was to determine the accuracy with which trajectories could be
forecast. The duration of the forecasts is not stated. The level was
300 mb. The error summary, which is reproduced below, refers to the
"deviation of the forecast from the observed end point of the trajec-
tory expressed as a percentage of the radial distance from the launch-
ing site to the observed terminal position. The error is expressed as

* an error along and at right angles to the trajectory." Table II below
summarizes the results. The 76 cases presumablyrefer to several AWS
detachments forecasting for the same trajedtorieii.

TABLE II

Frequency of Trajectory-Forecast,,Errors
Within Percentages Indicated

- Case of Cases of
Percent Error Across Error Along

Trajectory Trajectory

0Oto 9.9 27 15
10 to 19.9 24 19
20 to 29.9 8 17
30 to 39.9 4 10
40 to k9.9 6 8

50 to59.9 3 1
6o to 69.9 14

to 799 1 1
to 9.9 2 1

90 to 99.9 0 0

Totals 76 76
L Avg. % error 19.5 25.9

Assuming the distribution of component errors is such that we can
find the percentage absolute error as V (19.5)2 + (25.9)2 = 32.5%, we

may compare this value with the value of 32% from Machta's evaluation
of hindcasts. We note that there is surprisingly little difference be-
tween the accuracy of hindcast and forecast.

The similarity of the average accuracies of hindcast and forecast.,
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trajectories has also been remarked upon by Moore et al [22]. Their

experience relates to 300-mb flights: "Attempts were made to forecast

the impact points of the balloons at the end of their flights. Mul-

tiple forecasters and procedures were used to minimize subjectivity.

Although it was found that better forecasts could be made in certain

selected flow patterns and that experience improved the forecasts, the

accuracy which could be obtained was limited. Average errors in the

prediction of the impact point amounted to about 23% of the total range

under all weather situations for which balloons were flown. Under con-

ditions selected by the forecaster as optimum, this error could not be
1reduced below 18% of the distance travelled.

"It was recognized that operational degradation would reduce the

effectiveness of the forecasts whenever the time of launching, rate of

rise, floating altitude, or flight duration were different from those

assumed by the forecaster. In addition, errors in the basic forecast

of the pressure and wind'fields to be encountered during flight would

affect the accuracy of the trajectory forecast."

A study was made of 20 flights selected for good mechanical behav-

iot, i.e., adherence to the 300-mb level and extension to an average

length of 1,000 miles. Hindcasts for these 20 flights had an average

error of 20% of the total flight length. This large hindcast error

amounted to 80% of the original forecast error for the same flights.

1.14.2. Influence of Flow Patterns on Accuracy of Computed Trajec-

Stores. In broad zonal currents of fairly uniform speed the computed

trajectories will usually have smaller percentage errors than in flows

characterized by large horizontal shears and streamline curvatures,

such as usually occur in a low-index situation with closed circulations

and generally complex flow patterns.
Figure 13 shows a case of the former type. The trajectory has

been computed using the Central Tendency Method with geostrophic winds.

It can be seen from the consecutive sections of the contour charts that

the situation is fairly stationary. Although the percentage error at

first is fairly large (see, for example, at 17/15Z) the percentage

error decreases with time, since there is little tendency for the abso-

lute error to accumulate. The data for the observed trajectory, Trans-

osonde #994,,is taken from Mastenbrook and Anderson (20].
Figures 15a, b, and c illustrate a case of the latter type. All

( three Figures refer to Transosonde #993; the hindcast trajectory has
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been constructed by three different methods to illustrate their rela-

tive merits for this case. In Figure 15a bhe Central Tendency Method

with geostrophi winds has been used, in Figure 15c the Central Tenden-

cy Method with streamline and isotach analysis, and in Figure 15b the

Franceschini-Freeman Method. Figures 14a-c show the contour patterns

during three days of the trajectory.

The balloon kept floating for more than 3 days. On the last day

the trajectory completed a loop around the low. Only the Central Tend-

ency Method used with streamline and isotach analysis imitated this

loop. The errors of the three constructions are listed in Table III.

TABLE III

Errors in Computed Trajectories of Transosonde #993
(.in Degrees Latitude)

Central Tendency Central Tendency
Period Method Method (Stream-, Franceschini-
(hours) (Geostrophic) line and Isotach) Freeman Method

~6 o. 4 o
6 0.5 040.5 -

12 0.3 1.6 0.1
18 3.2 3.0 0.2
24 6.1 4.o 1.2
30 7.4 3.7 2.2

i36 11.7 5.3 2.4
42 17.7 9,.6 5.8
48 22.0 13.0 3.5
54 23.2 8.8 5.0
60 24.3 5.4 5.9

66 29.4 10.3 3.072 41.3 5.6 10.8

;849.5 5.6 23.3
49.3 6.1 24.5

Average 20.4 5.9 6.3

There is a marked increase in error with time. For the C.T.M.-geostro-
phic this occurs already after 18 hours, for the F.F.M. after 66 hours.
The C.T.M.-isotach and streamline analysis starts going off twice but

recovers after making the loop.
Such a gradual edging off into a part of the pattern which then

rapidly takes the computed trajectory away from the actual trajectory,

is typical of such complex patterns as illustrated above. "Getting off
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Figure J14b. (See Figure 14fa, page 43 for legend.)
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... /... COMPUTED TRAJECTORY
* L..~-- *-~STREAMLINES __.3O
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-t 300 M

F"igure 15c. Hindcast of the Trajectory of Transosonde #99A,
May 1953, Computed by the Central Tendency Method Using
Streamline and Isotach Analyses (analyses by AWS Scientific
Services). Sections of the streamline and isotach analyses
in the neighborhood of 12-hour legs of the computed trajec-
tory are shown. The division lines between these sections
go through the computed balloon positions at 09Z and 21Z.
Near the loop the divisions become more complex. The little
pentagon in the loop belongs to the 05/03Z map, and the
little triangle to the right of the trajeetory crossing be-
longs to the 06/03Z map.

the rails" in this manner may occur early in the trajectory and make

the whole trajectory poor, as was the ease with the C.T.M.-geostrophic

in this example.
Furthermore, large errors in the trajectory forecast may occur if

the balloon is released near or comes near an axis of diffluence so

that uncertainty exists as to which side of the axis the balloon will

float; also, near neutral points (cols, centers of highs and lows) the

trajectories are often erratic.
If the forecaster has any control over the release time and it is

imperative to forecast with accuracy, he should wait for a pattern such

that confidence in the forecast exists.

1.14.3. Comparison of Methods. Headquarters Air Weather Service re-

cently evaluated the relative merits of some of the most well-known

trajectory constructions. The methods involved were:
Method (1) - Central Tendency Method with geostrophic winds.

Method (2) Central Tencendy Method with winds from streamline
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and isotach analysis.

Method (3) - Consecutive Streamline Method, backtracking (see

Figure 3b), with geostrophic winds.

Method (4) - Consecutive Streamline Method, backtracking, wi.th

winds from streamline and isotach analysis.

Method (5) - The Francesechini-Freeman Method,

Streamline and isotach analysis was attempted only over the U.S.

where data were adequate to warrant such an analysis. This eliminated

comparison with methods (2) and (4) for the part of the trajectories

that passed outside this area.
C .-iThe trajectories used for verification were Transosondes #990,

991, 993, 994, 995, 996, 998, and 999 at 300 mb [20] and the balloon
flights F30, F31, P35, F37, and XF41 at 200 mb from, "Constant Altitude
Balloon Flights at 39,000 feet from October through December 1954,"

Appendix I, Atmospheric Devices Laboratory, Geophysics Research Direc-

torate, Air Force Cambridge Research Center, May 1955.
The tables below show some of the comparisons.
In Table IV the averages in parentheses cannot be compared direct-

" fly with the other values, since they are based on a smaller number of
trajectories.

V It is apparent from Tables IV and V that the success of a trajec-
tory computation depends more on the flow pattern than on the particu-

lar method used.

1.15. Choice of Method.

From the evaluation reported on in the preceding paragraph, a pref-

erence for any partlcular one of the tested methods could not be estab-

lished. Comparative evaluations by other authors also show that the
Svarious constructions accomplish about the same statistically.

We should not draw the conclusion from this that the method used

in any individual case is irrelevant. The statistics only show that if
a method is used consistently in all sorts of flow patterns, the aver-
age accuracy is about the same for all methods.

Some of the methods have their peculiar advantages and disadvan-

tages depending on the flow pattern. For example, in rapidly changing

flow patterns any method that freezes the flow pattern for the period

between two consecutive charts, such as the Central Tendency Method,
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TABLE IV

Errors (degrees latitude) of 300-mb Trajectory Hindcasts by Various Constructions, as
a Function of Flight Time. (Balloons released from Minnearolis, April to August 1953.)

Flight Time of Transosonde
6hours- 12 hours 18 hours 24 hours

Method No. 1 2 3 4 1 2 3 4 2 3 1 3

Flight No.
990 1.3 0.8 1.2 0.8 3.4 2.3 2.8 2.7 5.4 7.4 5.2 6.3 6.7
991 1.2 2.4 1.3 --- 2.8 5.4 2.5 --- 3.9 10.1 4.7 5.8 7.9
993 0.5 0.4 0.5 0.4 0.3 1.6 1.7 1.5 3.2 3.0 1.2 6.1 2.0
994 0.9 --- 0.8 --- 0.4 --- 0.5 --- 0.4 --- 0.5 1.3 1.4

995 1.1 --- 11 - 6.1 --- 5.8 --- 9.6 --- 11.2 16.0 18.9
996 3.0 -- 3.0 -- 5.2 -- 2.5 --- 3.4 -- 1.5 - ---
998 0.4 ,-- 0.4 -- 0.9 -- 1.6 -- 0.9 --- 2.3 2.6 2.7
999 0.4 -- 0.4 -- 1.6 -- 1.6 -- 4.1 - 4.6 7.3 8.5

1- 0 - - - -1. 4i - ,: - 8'

Average 1.1 _(5.2)1.1 (0.6) 2.6 (3.9) 2.4 (2.1)3.9 (6.8) 3.9 6.5 6.9

1 _ _ 30 hours 36 hours 42 hours 48 hours 54 hours 60 hours
Method No. 1 3 1 3 1 3 1 3 1 3 1 3

Flight No.
990 5.2 7.8 7.7 9.4 10.3 10.8 13.0 11.5 .- -. ..
991 6.2 7.6 6.2 7.6 4.7 7.2 3.7 7.4 9.2 4.0 10.4 3.4
993 7.4 2.2 11.7 4.5 17.7 8.0 22.0 12.8 14.4 23.2 6.3 24.3
994 0.9 1.7 2.5 3.3 1.8 4.0 2.4 0.6 ... ... ... ...

995 23.5 27.1 28.4 31.4 30.3 32.0 30.9 33.6 34.0 30.0 37.2 33.2
996 --- --- ---

998 4.1 1.6 7.3 4.5 12.9 10.0 16.7 11.1 13.4 16.7 16.2 17.0
999 1 0.8 10.3 8.5 6.5 4.5 3.9 3.3 3.2 4.7 3.0 1.

Average 8.5 8.4 10.3 9.6 11.7 10.8 13.1 11.4 15.4 15.1 19.5 17.5

TABLE V

Average Errors (degrees latitude) of 200-mb Trajectory Hindoasts by Methods No. 1
and No. 5. (Flights launched from Vernalis, California, December 1954.)

AACS Fixes CAA Fixes

Method Method Number of Method Method Number of
Flight NO. No.1 No.5 Fixes No.1 No.5 Fixes

F30 2.6 2.4 62 2.2 1.2 4
F31 2.2 2.0 43 1.8 1.9 3
F35 2.5 2.5 20 4.4 3.4 3
F37 3.4 2.1 65 5.2 3.5 6

D1__ 2.0 2.6 55 2.1 2.1 17

Average 2.5 2.3 3.1 2.4
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will usually give poor trajectories. In patterns that change slowly or

little the Central Tendency Method is a fine method because of its ease

of application.
In rapidly changing flow patterns where the change can be described

fairly well as a translation of the flow patterns, the Relative Trajec-

tory Method or the General Mills' Method will give good results. In

practice, however, the change of the flow pattern can be described as a

constant translation only over a limited region of the chart. Outside
this region the patterns may move with a different speed or remain

stationary; consequently, here a different system displacement or some

method other than the Relative Trajectory Method must be used.
When the flow patterns change rapidly and the change cannot be de-

* scribed well as a translation of the type assumed in the Relative Tra-
jectory Method, some other method should be used. An example of such a

type of pattern is a circulation that intensifies as it moves along.

Pettersse.'s Method, the Linear Interpolation Method, and the dynamic

methods are designed to take such changes into account.

Prom the aforesaid it is apparent that the flow pattern should in-

fluence the selection of the method. The broad principles for this
selection are outlined above.

I In complex flow patterns with pronounced shears, curvatures,

branch points, and singularities there will, at times, be regions where

dual possibilities exist for two diverging trajectories. The fore-
caster who prepares the trajectory forecast will then be faced with a

dilemma: he has to choose between two possible but widely different

trajectories. The dilemma may occur right at the start of the trajec-

tory or sometimes later in the trajectory. It happens whenever the

balloon comes into the vicinity of a line of diffluence or of a singu-

lar point in the flow (cyclonic or anticyclonic circulation center or a

col). The scientific approach to resolve this dilemma is to indicate

two trajectories and point out t9 the using agency that equal probabili-
ties exist for each of them. The using agency can then incorporate this

facet in their operational decision.

1.16. Climatological Trajectory Studies.

In planning constant-level balloon operations many problems of a

climatological nature arise. Climatology deals with the probabilities

of certain incidents as determined by the historical behavior of the
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atmosphere. The frequencies of these incidents are established on the

basis of past weather records, and it is assumed that the future proba-
. bilities can be estimated from these frequencies.

Some examples of the questions which may be asked can serve to

illustrate the object and method of such climatological trajectory
studies:

a. Given a certain Area A and a number of potential release

points, what are the most "favorable" release points in a certain month
for balloons floating at 300 mb? When balloons are released from all

potential release pointa according to some prearranged schedule, the
"favorable" release points are the ones which have the highest number
of trajectories crossing Area A.

b. What percentage of the balloons released from a point ac-
cording to a prearranged schedule can be expected to hit A? (A hit is
a crossing of Area A by a trajectory.),
tocse . What is the probable percentage of hits if a forecaster were
to select the release time? This percentage should be expected to be
higher than in "b" on the basis that a forecaster is able to forecast
the trajectories with some skill. This will be the case if the

scatter of the forecast error is smaller than the scatter of balloons
released according to a prearranged schedule, irrespective of flow
pattern. Thus, it is seen that the fQrecasting ability enters as a
factor in this question.

d. What is the probable distribution of flight time among the

trajectories from a point to Area A?
These are just a few of the questions which might have to be answered
in the planning of constant-level balloon operations.

One way of providing the answers to these questions is to operate
with "paper" flights. For instance, to answer question "a" a series of
historical 300-mb maps for the pertinent month can be used for con-
struction of a series of trajectories from the potential points. The
number of trajectories that intersect Area A from the various points
are tabulated and will yield the required information. It is to be
noted that several years of data have to be used since the flow patterns
during a certain month may vary considerably from one year to the next.

The table will also answer question "b".
Gathering the data needed for climatological trajectory studies by

the "paper"-flight method is a laborious task since a large number of

trajectories have to be constructed to obtain representative samples.
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At the present this must be done by hand. At some future date it is

visualized that analyses for machine processing will be available and
the task will be considerably lessened.

There is another avenue of approach offered by the statistical
theory of turbulence. If the statistical properties of the "large-
scale" turbulence could be established by analogy with thost of the
small-scale turbulence, these properties could be used directly. How-
ever, the necessary statistical properties of the "large-scale" turbu-
lence are not sufficiently known at the present time if, indeed, they

do exist.
S. B. Solot has developed a semi-empirical method of solving cli-

matological problems in connection with trajectories. The method is
much less time consuming than the "paper-flight" method and gives, it
is claimed, results of comparable accuracy. For information on the
method, reference is made to Air Force _Surveys in Geophysics No. 61,
"Meteorological Aspects of Constant Level Balloon Operations," Air
Force Cambridge Research Center, December 1954.

I
V!
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Section II

SOME THEORETICAL ASPECTS OP CONSTANT-PRESSURE TRAJECTORIES

2.1. TraJectories by Particle Mechanics.

2.1.1. Trajectories and the Contour Field. With a few minor simpli-

fications which amount to less than 1/10 of a knot per hour, the accel-

eration of the horizontal motion of the atmosphere may be written:
(1) -(1) v -e-f x (v - v

9
where v is the horizontal velocity, g is the geostrophic wind, f is the
Coriolis parameter, and is a vertical unit vector.

Turbulent stresses have here been neglected, but even so the equa-

tion probably has a high degree of fidelity for the scales of motion

dealt with on synoptic charts - except for the motion in the lowest

few thousands of feet. Here v the geostrophic wind, is an expression

for the' horizontal pressure force -aHp -gVpZ; p is the horizontal

del-operator applied to a quantity in an isobaric surface, and z the

height of this surface.

(2) g = X z

Thinking of the wind v as a function of horizontal position, for

instance x and y, pressure p, and time t:

V= (X, y, p, 01

we can write:

(3) + v. +

Defining

(4) = )p + v. V V,

V may be interpreted as the horizontal acceleration of an object that

is constrained to remain in the pressure surface p and that undergoes

a horizontal displacement Identical to that of the air that surrounds

it at any time.
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This motion is well apprl-oxlimated by a constant-pressure balloon.

')y means of a control device a hih-level constant-pressure balloon

is usually kept within ±10-15 mb of the intended floating pressure.

The large horizontal drag coefficient of the balloon makes it respond

to accelerations in the wind almost instantaneously, so that the

trajectory of the balloon will closely be determined by the equation.

(5) vp s dtZP
The trajectory of such an object that stays in the pressure

surface and moves with the winds in this surface will be referred to

as a constant-pressure trajectory.* We see from Equation (5) that

the horizontal acceleration of this object is determined by:

a. The Coriolis acceleration of the geostrophic departure

v - v in the surface and

b. A term - 6 composed of the individual pressure

change dp/dt of the air in the pressure surface and the vertical

wind shear v/dp. Since dp/dt is mainly given by the vertical motion,

the second term will be referred to as the vertical motion term.

-2.1.2. Effect of the Vertical Motion Term on Constant-Pressure

Trajectories. The vei.tical motion term can also be written:

- dt - V'VZ - (w -. wp)

where wis the vertical velocity component of the air and w is the
p

vertical motion of the pressure surface. Since the motion is mainly

geostrophic v.V z is small compared to w - wp if the latter is
p

appreciable at all. This can be seen by an example:
- f- - -g~

'1'7 Z=- v X vG OR
p

Choosing v = 50 m see with a geostrophic departure normal
s e m a ) = l -4 s e 0 1M -1

to v of 10 m sec magnitude, (v z) = 10 sec"  X I0"  sec 2  x

10 m sec" x 50 m see = 0.5 cm/sec. at 40N.

*Since the main concern is this Manual is the construction of constant-pressure tra-

jectories, they will often be referred merely as trajectories, meaning constant-
pressure trajectories if nothing else is stated.

53
,7



September 1956 AWSM 105-47

Even this fairly large ageostrophic motion is equivalent to the

very modest vertical motion of 0.:) cm/sec. Hence, the telm V-V z can be
p

neglected when compared to (w - wp) which measures the vertical motion

through the pressure surface. We obtain for the vertical motion term:

-r= -Fw - Wp)

We will assess the magnitude of this term by a numerical example.

Choosing w - = 3 cm/sec and /z = 5 knots/1000 feet, we get

- 6v = -1.8 knots/hour.

If these conditions, (w - = 3 cm/sec and 6/6z 5 knots/lO00
p

feet, Were sustained over 10 hours of the trajectory we would make an

error in the computation of the position of the object of approximately
1 X 18 knots/hour x 102 hour 2 = 90 nautical miles by neglecting the

vertical motion term and computing the trajectory according to the

equation:

(6) v Xix -O

The trajecto'y will be too long by 90 miles in the example.

The conditions in the example chosen cannot be, said to be unusual.
Maximum-wind and shear charts [32] show that 6/6z 5 knots/l00 feet )
may occur in long elongated bands in pressure surfaces undermzeath the

maximum-wind level, and similarly -V/6z 5 knots/ 1000 feet above the

level of maximum winds. 3 cm/sec appears to be a moderate rate' of
vertical motion. Various studies show that vertical motions of this
magnitude may occur over large areas for extended periods of time.

Neiburger and Angell (231 evaluated the vertical motion term along

constant-pressure-balloon trajectories using the adiabatic method for
obtaining dp/dt and obtaining a/ap from rawins in the vicinity. They
found that the magnitude of the vertical motion term was on the average

20-25% of that of -fk X (v - v ); omission of the term as done in
Equation (6) leads to a fair approximation of the trajectory.

Since vertical motions are mostly unknown, there is at present

no method whereby we can make allowance for the vertical motion term
when computing constant-pressure trajectories. All we can state is
that cumulative errors up to 100 nautical miles may be made over a
period of 10 hours when computing trajectories according to Equation (6)
because of omitting the vertical motion term. However, other sources
of error, such as insufficient knowledge of the contour field, gat
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iall times, usually lead to more serious errors. Therefore, we may

state that in the present state of the art of constructing constant-

pressure trajectories by means of dynamic methods, omission of the ver-

tical motion term in most patterns does not lead to any gross errors.

When the wind shear is large, it is usually directed along the

trajectory. The large-scale vertical motions In the upper atmosphere

are in the mean distributed according to the formula: subsidence

downstream from ridges and upstream from troughs, upward motion down-

stream from troughs and upstream from ridges.

II

ABOVE THE LEVEL OF MAXIMUM WINDS I

ITOOLONG TOO SHORT I
TRAJECTORIES I TRAJECTORIES I

IHORIZONTAL
STREAMLINE

: I CONTOUR)

( BELOW THE LEVEL OF MAXIMUM WINDS

I TOO SHORT TOO LONG
I TRAJECTORIES I TRAJECTORIES

Figure 16. Schematic Diagram of the Effect of Neglecting the
* Vertical Motion Term when Computing Dynamic Trajectories.

Hence, neglect of the vertical motion term will lead to the type

of errors illustrated in Figure 16, when the trajectories are computed

by dynamic methods.

2.1.3. Dynamic Methods of Trajectory Computations. Referring again

to Equation (6), we see that if the contour field of the pressure sur-

?V face is known as a function of x, y, and t, the trajectory of an object

is uniquely determined if its initial position and velocity at a time,

t = 0, is known.
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lethods utilizing £'quation (6) for constructin2 trajectories

will be referred to as dynamic methods, and the trajectories computed

by them as dynamic trajectories.

The efforts that have been made in the past on dynamic tra-

jectories can be grouped in two classes according to how v,- is

-orescribed:

a. The contour field is prescribed by mathematical func-

tions.

b. The contour field is prescribed graphically.

A The work carried out in the first class is not directly appli-

cable in practical trajectory computations since the contour fields

occurring in practice only poorly resemble mathematical models,

both stationary and moving ones. Nevertheless, the contributions in

this field have great theoretical interest. They illustrate the air
flow in the various pressure patterns. Also, they have been partic-
ularly interesting through demonstrating that large ageostrophic

motions may occur; this has later been verified by study of actual
trajectories, computing v - v from the accelerations obtained from
the trajectories (Durst and Davis [IU] Emmons [6], Neiburger and An- )
gell[23], and Godson (11]).

The graphical methods are directly applicable to the practical

meteorological situation; i.e., v is given by contour charts at

intervals of 12 hours or 24 hours.
In between standard synoptic hours, intermediate charts may be

drawn by interpolation for sufficiently small intervals to satisfy
the convergence criteria of the graphical integration method, or
some transition from one chart to the next (such as a time-linear
transition in the local v) may be assumed. Two of the graphical
methods will, therefore, be described in detail further on.

2.1.4. MathoMtical Trajectories. These are trajectories in

Class a, above.
2.1.4 .1. vg = constant.

The simplest of all geostrophic-wind fields is a stationary
uniform one, v_ is constant in space and time. Equation (6) is
directly integrable. Since v, Vg, and v are all coplanar vectors*

it is convenient to replace the vector symbols by their complex

equivalents:
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V = =u +iV

vg = 7 u ug + ig

Equation (6) may then be written:

( 6') -ri(e -, 7)

or for the position vector z x + iy:
+ - fiY = 0

with the solution C = + (C - Y)e- ft
0 (6 y.( e" ift)

(7) z -Yt-, (o "Y) (1 - )

for the initial conditions z = O, e = C0 when t = 0.

f has been treated as a constant.

This motion plays a fundamental part in the theory of atmospheric
trajectories and will be discussed here in some detail.

In vector notation:
sinf(ft * [](8) vt+ r(:) v t -#ihV V)

where r is the position vector of the object. Equation (7) or (8)
gives the trajectory of the object. Its displacement has two components:
a steady progression, (v t), and an oscillatory displacement with a

period' 2 r 12 hour
T 1 urs half a pendulum day.', i - ' sin0'

Figure 17 illustrates a graphical construction of the displace-

ments. The object starts out at A at t = 0. With the geostrophic
velocity it would be at B at time t; with the initial velocity it would

be at C; actually it arrives at D. D is located thus: Prom A, a right

normal to v - v is drawn; centered on tnis normal a circle with a
1 *

radius Ivo - v I is drawn through A. From OA an angle e = ft inter-
sects the circle at E. At is the oscillatory component. When A is
added to n, - = is obtained. When t varies from 0 to T, point E
runs around the entire circle anticyclonically (inertial circle).

It will be seen from Figure 17 that the trajectory is described by
the point A rigidly fastened to a wheel, radi# -1f IvL concentric with

the first circle, and rolling on line LIL1 . The point runs through

the trajectory at the proper speed when the wheel rolls with an angular
speed off. When I - 1 I9 v1 the trajectory will be a curtate,
common, and prolate cycloid respectively. The prolate cycloids have

b ,loops.

Figure 18 shows the trajectory at 430N corresponding to conditions

__ 57
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V 50 KNOTS
SPEED SCALE

0 50 100 N.M.
4,> ~~~~~DISTANCE SCALE '.--~.---~~.

f 1 -O4 SEC . (40 N)

-(I-OS 6 Kx( C 0)/f wofj

~ ~j ~--0

W g

Fiec gu ha ris. Teproet~0Ni 17.8 hours.tio The trajectoryofaUirmG -

is a curtate cycloid.
In this connection it is interesting to note that Neiburger and

Angell (233 in their study of Navy transosonde flights (at 300 mb)
found an average period of about 18 hours in the sign of the cross-
contour motion off the balloons. The mean latitude of the trajectories
was 35-1400N; release point was Minneapolis. It appears that this os-

cillatory motion around the geostrophic trajectory as a mean position
li~ne with a period near half a pendulum day may be a common occurrence
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1O0 N.M.

,.OSEC

4 6 TRAJECTORY

Figure 18. A Trajectory in a Uniform Geostrophic Wind Field
at 430N. With the initial conditions state'! in the diagram
the trajectory Is a curtate cyloid with a period of' 17.8
hours (half' of' a pendulum d.qy)

in actual trajectories, although the period of' the oscillation will be

more complex in the actual contour patterns of' the synoptic charts.

Ref'erring again to Equation (8) and def'ining a dimensionless oper-

otor X*( )(applied to a vector quantity) as

where X depends on latitude and time only, we can write

r v -( - )t.

For angles of' ft '~.1 Equation (8) may be approximated by

(SI)- *.x*.( 0 -

whore x*.( (

Wr~~ I ~:horsC i~ 10~ (40-IN1, r - r* o.16 x( -

For v' -2. 0 knots, ri 3.2 nautical miles. This small
0

dilfference ia negligible in ordtnary map work.

For tile velocity at the end of' the trajectory we obtain with the

same approximations f'rom Equation (7T):

Formulae (9) and (10) are of' interest since they are the f'ormnulae

used by Franceschini and Freeman [9] in their graphical trajectory con-

struction. In their procedure v is identif'ied with the time-space

mean of' the geostrophic wind over the trajectory, and only a short bit
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of the trajectory to t 2 hours is used.

2.1.4.2.y Y Yt

This case., whe'e v is independent or : and , but changes with

, t, was first studied by Hesselberg (15] and later by Stewart [28] and
Forsythe [8].

The general soutLion is
t

S oe- ft  - ift eift
0 Ife Je y(t)dt.

0

Choosing a simple function

y(t) y0 + at

where a is the oonstant rate of the local geostrophic wind change, we

obtain
i ~ ~ i . eift

(ii) 1 0 + at + W-

Brunt and Douglas [33 called the quantity - the isallobaric wind.

For the trajectory we get

(12) z -y - (Yo-
The magnitude of the local variation of the geostrophic wind

may be approximated by that of the wind itsel'. Sutcliffe and Sawyev

(29] give the 24-hour root-mean-square vector change of the wind at

300 mb as 48 knots. This gives a smoothed root-mean-square value for

a of 2 knots/hour. This case is further discussed in sub-section 2.1.6.

2.1.4.3. Other Mathematical Functions for . Forsythe [8) studied

trajectories in the field, Vg = (ax + by : c)T - (dx -- ey -t h)J (sta-
g

tionary linear vector field), and also the general case of stationary

circular contours.

Gustafson (12] used various mathematical models for the con-

tour field, among them a propagating geostrophic jet-stream wave. He

was also able to take the variation of the Coriolis parameter into

account. A differential analyzer was used since the models were de-

fined by equations that could not be integrated by tabulated functions.

2.1.5. Graphical Construction of Dynamic Trajectories. In practice

the v field is given by synoptic contour charts at 12- or 24-hour in-

tervals. These charts may be analytic or prognostic. The characteri-

zation of the contour field is now much less precise than when it is

presented mathematically. '
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The chart may be divided up in sections such that the 'character"

of the contour field may be said to be fairly unifora within one and

the same section, but varies from section to section. The size of a

section may, for instance, be 100 100 (nautical miles)2  Within a

section, evg/6t may be assumed to be constant during a time interval,

for Instance,2 hours. By having "uniform character" is meant that the

contour field within the section is sufficiently accurately described

by constant values of certain parameters. The whole chart is then

built up of these mosaic sections with the characteristic parameters

constant within one and the same sedtion and time interval, but gener-

ally different from one section to the next and from jne time interval

to the next.

As far as characteristic parameters are concerned,the choice is to

a certain extent open. The parameters nmst be easily measurable and

graphically presentable. Furthermore, only parameters can be used

which determine such a contour field within the section so that the tra-

Jectory through it may readily be obtained. The degree of complexity

of the parameters we may choose is also greatly limited by the uncer-

tainty with which the contour field is known. On analytical contour

charts this uncertainty is imposed by insufficient data coverage, ob-

servational errors, and indeterminacy of the contour field between the

synoptic hours. On prognostic contour charts the uncertainty is en-

hanced by errors of prognosis.

The sections and intervals do not have to be of the same size.
Where the parameters vary slowly in space and time, longer sections and

intervals may be chosen than when the variations are pronounced.

As parameters we may think of: v itself, t geostrophic

shear, contour diffluence, contour curvature, the constants of the best

linear fit to the vg field, etc. Even if trajectories through fields

characterized by constancy of vg t 6 etc., or combinations

thereof may be obtained by graphical means, measurement of the parame-

ters and the ensuing graphical trajectory construction is so time con-

suming that the process for any but the simplest parameters is not

justified in view of the uncertainty already mentioned.

One of the graphical methods for construction by dynamical trajec-

tories is the method of Franceschini and Freeman (9).

2.1.6. The Franceschini-Freeman Method. This method assumes a con-

stant V8 over a section and no change of vg during a time interval.
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The time interval is chosen equal to 2 hours. The section is chosen as

a strip along a vector 2 hours times v where v is the initial velocity,
0 0

which must be known. The width of the strip is chosen so that it takes

in the trajectory. At the outset the trajectory is unknown, of course,

but a sufficiently good approximation of it can be made to determine

the width of the strip. The average aeostrophic wind over this strip

is measured. We will denote it with vg. Usually the space-time aver-
age Vg over 2 hours times vo = is good enough (see Figure 10). This
quantity v is an approximation of the space-time average geostrophic
wind over the trajectory.

With vg as a constant field, Equation (9) gives the displacement

with sufficient accuracy for t = 2 hours. For t 2 hours, operator X*

becomes
X*.( ) -0.52 sin x x ( ) - 0.18 sin2 0 (.

X* is dimensionless and only dependent on latitude 0.
The authors have constructed a scale for performing the operation

X*( ) on the vector 2 hours times (4 - v ) The graph is reproduced

in Figure 8. The use of it is explained in sub-section 1.12.
The velocity at the end of the 2-hour period, which will be the

initial velocity for the next period, is found from Equation (10). The )
initial-velocity displacement to be used for the next interval will

then be
ovt - X(i* -; t)

0
For t = 2 hours we get

- 1.05 sin *- 2)

Figure 19 shows diagrammatically how the Nomogram of Figure 8

determines the trajectory terminal & and the next initial-velocity

displacement 2V*.
To get v. for the 2-hour intervals between synoptic hours, the

assumption can be made that the local v varies linearly with time:

(vS* = [g)h+12 - V)h)
-J ) + [(

Swhere (v and (vgh+i2 are the geostrophic winds at the synoptic

hours h and h + 12, respectively. (Vg)k is the geostrophic wind during

the kth interval after h-hour. For choice of intervals see paragraph
1.12.1 .f.

It will be noted that the changing geostrophic wind field is taken

into account when it comes to determining the constant v8 during an in-
terval, but the effect of geostrophic wind change during this interval
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is neglected. The effect during this interval is that of the isallo-

baric wind, as exemplified in the case of Equation (12).

fT

I

T u 1.05 SIN4~O~

3

K p

0 ID0,52 SIN (P Kx C

Figure 19. Franceschni and Freeman's construction

of the trajectory for 2 hours starting from point P.
is the 2-hour displacement with the mean geostro-

( phic velocity vg and the 2-hour displacement with
the initial veloclty vo. From these basic veqtors

the terminal of the trajectory, r*, and the velocity

at this point, V*, are determined as shown in the dia-

gram. The initial-velocity displacement for the, next

2-hour period is 2 * and is set off from the end

point of r*; a new mean geostrophic-velocity dis-
placement X is determined, and the process is repeated
for as many periods as is desired.

If we denote the displacement computed with the isallobaric effect

from Equation (12) by z and the displacement computed without this

effect after Equation (7) by z, their difference is

z - z =T+ t 2 +a t- e'ift)

for ft <1 this approximates
z iaft3

Using the smoothed root-mean-square value of a from sub-section 2.1.4,
a 2 knots/hour and t = 2 hours, (z a- z1 is less than 1 nautical mile

at 1 0"N. Hence, the effect of local changes of the contour field may
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generally be ignored during a short period of 2 hours, and the formula

(9) of Franceschini and Freeman is valid for an interval of 2 hours

even with large local changes.

2.1.7. Extension of Dynamic Methods to Longer Intervals. A dynamic

method may be constructed for periods longer than 2 hours. Because of

the slow convergence of the series e- i f t for values of ft >1, the power

series for the exponential cannot be used.

p In addition it is no longer feasible to approximate the v field

by the mean over the trajectory since new effects arise through the

varying V field and these effects assume considerable proportions for

t > 2 hours. One approach is to assume some simple type of transition

in the field either tied to fixed coordinates or to coordinates follow-

Ing the motion of the air.

The graph and the operations do not become more complicated by

5 using the exponential instead of the power sefies. The power series

used by Franceschini and Freeman is a convenience when computing the

trajectory by numerical methods for short periods but Is an unnecessary

approximation in graphical computations. However, the form of transi-

tion of the vg field will have to be determined by the values of vg at

the initial and terminal points of the trajectory. The location of the

terminal point is not known at the outset; so Vg at this point cannot

be evaluated either. This difficulty can be overcome by resorting to a

series of successive approximations.

The result is that some time is saved by extending the method to

periods > 2 hours. Greater accuracy probably is achieved also by work-

ing with larger increments since accumulative scaling errors, which

arise through working with small increments, can be eliminated.

A dynamic method of this type will be described in the next sec-

tion under the name of the Air Weather Service Method.

2.1.8. The Air Weather Service Method. In sub-section 2.1.4.2. the

trajectory was computed through a geostrophic field that is constant in

space but changes linearly with time, y = + at where a is the local

acceleration. The trajectory is determined by (11) and (12) for the

initial conditions: z = 0 and E = 0 for t = 0.

We may also interpret this solution differently. We may assume

that the geostrophic wind affecting the particle in its trajectory

changes linearly with time or, in other words, that the individual ac-

celeration of the geostrophic wind is constant: )
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.: = 7 p 0 = constant
dt

where is a constant vector.

^Y 'Y + Bt

(13) 0 ' 'y-o
; • t

0 t T

where T is the period of validity. We need not be concerned about how
this linear change of 7 along the trajectory arises. It maybe through

I .local changes of the contour gradient, through curvature or spreading

of'the contours, or through lateral shear of the geostrophic wind.
These:all have to be balanced such that

dv a
= + V P constant

during the period in question.
The success of the method will, of course, partly depend on how

well condition (13)is met in nature. Since upper-air charts are avail-

able at 12 hour intervls, it is natural to choose 12 hours as the
period. For a period of 12 hours, Equation (13) is usually a good de-

scription of the pressure forces acting on a parcel. Whenever this is
not the case, T 6 hours will be used. The choice of the period is

discussed at the end of this sub-section.
A priori, there is no reason to believe that a transition of type

(13) is inferior to the assumption that the local geostrophic wind,
changes linearly with time.

With assumption (13) the dynamic equation (6') is again Integrable

and has the solution, formally identical with (1i) and (12):

0f 2z = + Ot - o - - -

(15) E + .o + Pt + (e - -- ) -

for the same initial conditions: z = 0, and C - E for t = 0.

Inserting the value of P from (13) and writing e = ft, we obtain

after some rearranging:

(14') =70 + (-- -Yo)[ +.- (1- e0')]Y- - ) e )

(15') E 70 +(y-y 0 ) (1 + (1 - e-)] + (o -0 Y) e-G
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This form is convenient for graphical evaluation.

Once the period "t" is chosen, we notice that the trajecto -y is

determined by three quantities: 1) the initial geostrophic wind, y0 ;

2) the vector change of the geostrophic wind over the period, - ;

and 3) the initial geostrophic departure, Eo - y0 " Each of these

quantities are multiplied by operators that depend on latitude only.

If the velocity vectors y0y (-- -0 ), and (C0 - 70) are represented on

a scale of 10 knots corresponding to 2 degrees of latitude on the map-

(scale and projection used, z/t will directly be the map displacement

after 12 hours since a velocity of 10 knots corresponde to a displace-

ment of 120 nautical miles = 2 degrees of latitude.

The length of a latitude degree varies somewhat with latitude for

the map projections used by the Air Weather Service. Least variation

is found on the Lambert conformal projections. For example, on the
Lambert conformal projection true at 300 and 600 the length of a lati-

tude degree deviates from the standard (at 300 and 600) by less than

3% between 15* and 65*.

On a polar-stereographic projection the length of a latitude de-

gree varies between 250 and 650 by as much as 18% from the mean length

at about 380. Hence, when the Lambert conformal projection is used,it
will be accurate enough to use a constant scale for the latitude degree

in the latitude band from 25* to 650. For a polar-sterographic projec-

tion the varying scale of the map must be used, i.e., when the answer
comes out as a displacement of so and so many latitude degrees, the
corresponding map displacement must be set off by using the length of a

latitude degree at the appropriate latitude. This illustrates the ad-

vantage of using Lambert conformal projections in trajectory work.
In equations (14') and (15') y, the geostrophic wind at the end

point of the trajectory, is not known at the outset since it is the end

point we seek. However, we may use a procedure of successive approxi-
mations whereby we can find an end point satisfying equation (i4').

This procedure is reminiscent of the procedure used by Petterssen in

his kinematic method (see sub-sections 1.6 and 2.2.2).

The procedure is schematically illustrated in Figure 20a. We can

rewrite equation (14'):iz
(14") A + B ( -h

where the vector A and the non-dimensional operator B are determined

by the conditions at the initial point only (latitude, in .tial velocity,
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70 -- 5

{ 0

- -t

604

1k40 -- 40

to 
•1 

3

To 20

Figure 20a. AWS Method - Successive Figure 20b. Convergence Diagram
Al Approximations for End Point of Tra- for the AWS Method. Spatial

jectory. variation of geostrophic wind
(Id-y idzI) I/ IBIt is given in
knots per latitude degree as a
condition for absolute con-
vergence of terminal point of
trajectory during a specified
period.

and initial geostrophic wind).

(15a) A - - (E0  Y0 )(i- e iO)

(15b) B= + - 1

First, an approximate location of the terminal is determined.,

This may conveniently be the terminal of the trajectory through the

initial point in the stationary geostrophic flow of the Chart h (begin-

ning of 12-hour period). This first approximation we may denote by zI .

The geostrophic wind at this point on Chart h + 12 (end of 12-hour per-

iod) is y1. In Figure 20a, P0 is the initial point and Pl is the first

approximation of the terminal. Next, y1 is inserted in equation (14")
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and a new terminal, z2 9 is computed (P2 in Figure 20a):

2 .A Be [71 - 'Y0

Usually, the Seoutrophic wind at P2, y2, is different from 71 . If

2 and 71 agree within the accuracy of measuring geostrophic winds on
the map, P2 is the terminal sought. Otherwise, the step is repeated

and we arrive at a series of approximations:

A + B.(y 2 -( 'Y )
P , z 4

=A + B'(7 3 -Yo)

A Be(n 'o)

where the geostrophic velocities y2, y3, ... are read off the
Chart h + 12 at points z2, z3 ,,..,z n respectively. This series is ex-
tended until the difference 7n - 7n_1 no longer exceeds the accuracy of

the chart evaluation of geostrophic winds. This accuracy is about 5
knots or 10% of the wind speed, whichever is greater. This stage will
be reached usually at the second or third approximation.

A graphical method for solving (14') and (15') by the series above

is described in sub-section 1.13.
This series above may be represented by:

z k=nn+l=A +Z
A' + =iB(-k -yk=l

n 1, 2,....

z is an initial guess of the terminal and 71 the geostrophic wind at
this point. The series zI, z2 , ... zn is absolutely convergent when
: Be (,yn+ l -i7n)

Since B.(n - znln - Zn)-', we obtain as the condition for

absolute convergence:
(16) {d_1l <

IdzI IBIt
In the limit we have written Ynl -n dy and Zn+1 - zn = dz.
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It should be noted that y is generally not an analytical function
of z so that the value of the differential quotient d depends on the

azimuth of dz. The factor IBI is determined from (15b):

IBI - (1-cos 0)]2 + 1 - sin 0]2)
2 e2  W 2

The condition for convergence may be expressed in graphical form

as the limiting value for the vector change of the geostrophic wind

over a horizontal distance of one degree latitude (60 nautical miles).

This is done in Figure 20b.

Since this is the condition for absolute convergence, convergence[ in actual cases may be obtained in fields of greater space variation

than indicated by these limits if the azimuths of space progression are

favorable.

2.1.9. Practical Difficulties of Obtaining Accurate Trajectories by

Dynamc Methods. Xn .the methodi described in 2.1.6 - 2.1.8 we have pro-

cedures for constructing fairly accurate trajectories when the contour

fields are accurately known. The vertical motion term which is about

( 25% of the effect of the geostrophic departure is, of course, neglected.

This is, however, a minor source of errors as will be pointed out later

in this section and as also is apparent from sub-section 1.14.

Is the upper-level contour field known so accurately that the

!"dynamic" trajectories constructed from them are improvements on tra-

jectories constructed from more simple assumptions, for example, geostro-

phic trajectories?
Studies of actual constant-pressure-balloon trajectories m',j throw

some light on this question. The accelerations of a constant-pressure

balloon may be computed from the observed trajectory. The root-mean-

square (RMS) error of the acceleration is given by:

a(LAA)

where a(Ar) is the RMS-fixing error; t and T are the time intervals over

which velocities and accelerations respectively are averaged (e.g., see
Anderson (1]). For t = 2 hours, T'= 4 hours, t(Ar) = 2.5 nautical

miles, c(AA) = 0.45 knots/hour. The figure a(Ar) = 2.5 nautical miles

is applicable when the balloon fixes are given by following aircraft.
When fixes have been obtained from time-lapse photos by cameras suspend-
ed from the balloon, still greater accuracy is possible. Fixes obtained
by radio direction finding (RDF) are far less accurate. For a certain
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sample of balloon flights at 300 mbs, Neiburger and Angell [23) found

a(ar) = 8.2 nautical miles for positioning by RD.
Emmons (6] calculated accelerations from constant-pressure balloon

data at 200 mb. The fixes were determined by trailing aircraft. Hence,

the value a(AA) = 0.5 knot/hour is applicable to this sample. From

Equation (6) he computed the associated geostrophic departures,
= - v. We will denote the departure computed from the trajectory

in this manner by t He also computed directly: v was obtained

from the trajectory, and Vg was obtained by 2 different methods as fol-low:
a. From the usually smoothed 200-mb contour charts analyzed

from height data alone (no pibals or rawins used). The departure com-
puted by this method will be denoted by z

b. Objectively from the constant contour field fixed by 3

stations in a triangle bracketing the trajectory segment. Sometimes 2

different triangles were tried for the same segment. We denote this

departure by t or - when two triangles were used.

Table VI gives a comparison of the departures t ' 3 over

nine different segments meeting the accuracy requirements stated above.
Emmons checked the vertical motion term and found that it did not

exceed 0.5 knot/hour in any of the cases. Therefore, the values in the

first line of the Table must be taken to be very near the true values.

Even using Neiburger and Angell's mean value for the vertical motion

term, the first line should give the departures with an average error

of 25%.
We notice that the departures obtained by the methods discussed in

sub-paragraphs "a ' and "b" above are generally too large; the depar-

tures obtained by triangulation are in the mean more than twice the

true ones.

Lines 4 and 5 show that the errors of the departures obtained from

charts are larger than the departures themselves. From this it does

not appear feasible to determine the "correct" geostrophic departures

from contour analysis at 200 nib. By "correct" geostrophic departures

is meant the departures which would give the correct behavior of the

balloon when computed from Equation (6). From line 6, the discrep-

ancy between the methods in "a" and "b" above is in the mean 24 knots,

which is larger than the quantity we want to measure. Line 7 shows

that the choice of triangle influences the result by 23 knots in the '

mean.
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TABLE VI

Comparison of 200-mb Geostrophic Departures (knots) from Contour Charts

0 and 3) with Those from Constant-Pressure-Balloon Trajectories

(t). (Where two values appear in a square, two triangles were used.)

Case Number

1 2 3 4 5 6 7 8 9 Mean

II 5 5 11 11 18 3 15 20 40 14

I~I 4 39 32 8 10 12 22 49 22 22

9 63 43 2 14 19 37 76 12
o 39321 23 4 24 5415

It t - zI 5 37 36 15 9 9 13 32 54 .23

L412 51 51 18 6 20 17 40 30
t 3. 62 45 8 5 64 25

13 22 67 14 4 27 21 6 3 4
I z  I 13 25 23 13 12 28 37 31,

( .3)l 3)21. - 3 54 -- 9 16 20 6 20 23

24 63 66 61 53 40 64 50 104 59

ltI/l~l 0.2. 0.08 0.17 0.18 0.33 0.08 0.23 0.40 0.39 0.23

These discrepancies are mainly due to the errors in the heights at

200 mb. The smoothed analysis removes part of these errors so that

Method "a" is generally a better method than "b", but the residual

error is still so large that the departures cannot be assessed.
Note that IV - -(V IV

Consequently, the mean vector errors in determining the geostrophic

wind by Methods "a" and "b" were also 23 and 30 knots, respectively.

The last two lines give the wind and the relative geostrophic depar-

ture. The average ratio It I/ I was found to be 0.23. Neiburger and

Angell found 0.394 at 300 mb for a much larger sample. I appears from,.

this study that the error in determining Vg in middle latitudes is

20-25 knots at 200 mb over a well-observed area such as the United

States (1949-50). Admittedly, this is only a tentative value because

of the smallness of the sample. Sutcliffe and Sawyer [29] arrive at a

somewhat smaller value, 14 knots at 200 mb; however, their value was
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based on a quite different approach.

Using the mean of 14 and 23 knots, i.e.., 19 knots, a Franceschini-
Freeman trajectory for 2 hours at 40ON would result in a mean error of

displacement of about 13 nautical miles due to inaccuracies in determin-

ing Vg. This estimate, applicable to middle latitudes, is found by

averaging Equation (9) and is, of course, applicable only to any indi-
vidual 2-hour leg of the trajectory. The extent to which this error is

cumulative is unknown.

The difficulties implied above increase with decreasing latitude.

The errors in the height reports are very much the same at all lati-

tudes but lead to larger errors in Vg and b in low latitudes than in

high latitudes. South of 20-25ON the errors in v approach the magni-

tude of v itself,. and any dynamic method will be useless here.

2.2. Kinematic Methods.

2.2.1. Introduction. In practice the flow fields in the atmosphere

are given by synoptic charts at regular intervals. The problem then is
to construct a trajectory starting from a known point Pc, at time t = 0,
during the time interval T which is the period between synoptic charts.

At this stage we need not be concerned about how the flow is repre-
sented. It may be by streamlines and isotachs, by contours, or by other

means.

In order to construct the trajectory some assumption has to be

made about how the flow on Chart 0 changes into the flow on Chart T.
Generally, the velocity varies both in time and space. ( , t) is

defined as a space-time point where A is the position vector from some
chosen origin and t is the time of the point. v(. t) is the velocity
at point (A, t); '(A, t) is the acceleration, and (A, t) is the local
acceleration at point (A, t), etc.

By the various assumptions which may be made regarding the transi-

tion from '(A, 0) to '(1, T) as t varies from t = 0 to t = T, a variety

of trajectory constructions arises.

In the following sections the constructions which appear to have
the most merit will be discussed: 1) Petterssen's Method, 2) J.J.
George's Method, which is a shortened version of Petterssen's Method,
3) Linear Interpolation Method, 4) Consecutive Streamline Methods,
5) the Central Tendency Method, 6) the Relative Trajectory Method,

and 7) the General Mills' Standard Objective Method, which may be
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considered as a version of the Relative Trajectory Method.

The operational aspects of these methods have already been de-

scribed in Section I. In the following sub-sections some additional

information of a more theoretical nature is given concerning some of

the methods.

Method 4, 5, and 7 are exhaustively treated in Section I and will
receive no further mention in this Section.

In addition to the methods listed above, a short paragraph on con-

stant-vorticity trajectories has been included mainly for completeness

although it does fit very well under the heading, Kinematic Methods.

All of these methods are kinematic since the trajectory is con-

structed by graphical integration of the known kinematic field

V V~n t)
to obtain the trajectory:

0
where (,t) now is.'a point on the trajectory (see Figure 21).

Several of these methods are discussed in some detail because none

of them can be singled out and recommended asthe optimum method under
all conditions. The selection of the optimum method depends on such

factors as: accuracy of the chart representation of the flow, length
of period between synoptic charts, the flow patterns themselves, the

time available for trajectory construction, the desired accuracy of the

trajectory, and possibly other factors.

The. selection of the optimum method is discussed in sub-section 1,15.

2.2.2. Petteresen's Method. It is assumed that the acceleration of

the air parcel is constant during the time interval T. With reference

to Figure 21
d 4. -

d v( , t) = const. a for 0 t T
(18) or , t) = -(goo 0) + _t

Writing ' = --o and since (9, t) is a point on the trajectory:

r _v* )d
0

and from equation (18):
t t)
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'I

TRAJECTORY

ItN
) "

0

Figure 21. Illustration of Notations
Used in Sub-Sections 2.2 - 2.2.5.

Thus, when t

(20) r v( 0  0) + ~AT]

The trajectories are second degree curves. Equation (19) is a

corollary of Equation (18). The end point of the trajectory is deter-
mined implicitly by Equation (20) and can be found by a successive
approximation method suggested by Petteresen.

Choosing the origin of the vector Aat the starting point of the
trajectory, P 0 in Figure 21, we have A 0  0, ri, and we can write
Equation (20) as follows:

(21) r~ T

The vector succession,

.In the first edition of Fetterssens book (25] a typographical error occurs in the

text. This has been corrected in the Second Edition (1956).
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"ti .  ro = T (o, o)

T V 0
L - : ' =~ ( I(o, o) + (,T)]

(22) = ( >(0, 0) + , T)]

'I

T = 0) + T)]

has r as its limit
r =lm rn

as n -> co

provided certain convergence criteria are met. Ertel (7) studied
the convergence of this series and found that the convergence condition

T <
W-(~)2 + 2

For magnitude, M- = 0.5 x 20"  sec, the limiting value of T is
about 8 hours.

To find the trajectory going through point P on Chart 0, the gra-
phical construction in Figure 2 is, equivalent to Equations (22). When
T is given in hours and v in knots, distances T; are in nautical miles.

We set off vectors T *(0, 0) and T4(ro, T) = P from
P0 . The point P bisects connecting line ABO between the vectors' end

points. Vector r T [v(O, O) + 2V.(ro, T)]. The velocity at P
on Chart T, v( I' T) multiplied by T is set off from Pc; this is vector

P bisects connecting line AB1 , and P2 is the second approxima-

tion to the end point of the trajectory. If now the velocity at P2,

v('r, T), is close enough to the velocity at Pl. the construction can
cease at this stage. If not, the procedure is carried on until a point

P is located on Chart T whose velocity is equal to the velocity at
point Pn-i within the accuracy of the chart epresentation. The conver-
gence of the procedure is expressed by the points P, P2, P3 steadily
approaching a final point P. The second approximation usually suffices.

(i When the point P has been located, the trajectory is drawn in by
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fitting a smooth curve through Pc and P, tangent to (0, 0) at0 and

tangent v(r, T) at point P.

2.2.3. J. J. George's Method. J. J. George [10) suggests that

the first approximation r of (22) will give good results for low-level

trajectories for chart intervals of 6 hours. He uses this In low-level

advection problems (fog forecasting):

ro= T v(o, 0)

i:. M- (0, 0) + v r0 ,
Ile does not pursue the higher approximations. If the series is con-

tinued as Petterssen's, it will converge toward the same point. An

illustration of J. J. George's construction is given in Figure 22.,

I' /

ro

:., ! ' r, =T/Z[V(o,*)+W(rO,T)]

PO

Figure 22. J. J. George's Con-
struction.

2.2.4. The Linear InUerpolation Method. It is assumed that

(2 ) ( , t) =v( , or -.. _>(__, T) - vJ(r, o1)

for 0 - t T for all points r on the trajectory. In other words, the

local wind acceleration, 6v/6t, is constant for a point but may vary

from point to point.
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The trajectory is given by

(2 ). r = f[J I v(r, o) + T)r•v r.
0

In practice the integral (24) must be evaluated stepwise. 
We di-

vide the period, T, into n equal intervals of length . Let denote

the position at the end of the k-th interval, i.e., at time t = kT/n.

The velocity at this point is -(i~k 0)on Chart 0 and ( T) on

Chart T. The displacements during the interval (k + i) is 
found by

addin 0 n vk' T), each weighted by the factors

(T - n d
and , respectively, of the integral (24). Using the weighting__T T

factors at the midtime of the interval (k + 1), i.e., at time t = x

(k + %) the weighting factors become:i T.( ,  T) T- t 2n.- 2k-1

a. For displacement "-): T--t=  2n02)..

t 2k+1
b. For displacement v rk T): 2n

The displacement during the interval (k + 1) then 
becomes:

i 25)n 2n .. 2r ...v k T)]

(25) ~( - ->(-) o) + rk( )

The total displacement is:'

k T 2n -2k-- v(r,' O)+ k +(26) rk 1
- r k 

+  -T n 1-T

Z The displacements at the end of the Ist, 2nd,...., 
n-th inter-

val may be written:
-,, = T 2n -l ) + (o,

r2 rl + R -g 0) + in- v(rl , T)J

r 2h- + n v(r, 0) + ; (2, T)]
,'' * T 1 2n2_-n1

4. -rn  rv( O) v (rn 1' T)]
n= +Frn., n) ,

The displacement (25) may be found by dissecting 
the connecting

line between the end points of vectors 
T 0) and T k T) in the

proportions k to n as shown in Figure 23. Frow this2n 2n

Figure:
Bt 2k + 1 Bi= 2k + I ( _ Ag)

2n 2n
2k + 1) A  2k + 1

2+ 2n
T - k- 1 0--o> o) + .. .. . ( T)
n v Ic 2n rk

Figure 4 shows the construction of a trajectory 
of T = 12 hours, n 4,
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i // \k2n-2K-1

21(4n

Figure 23. Construction of the Displacement
During the Interval (k + 1) by Proportionate
Parts.

and _ 3 hours, following Equation (27).n .

2.2.5. The Relative TraJectory Method. This method applies strictly
.only ,o flow patterns that are translated across the map without chang-
ing siape and intensity.

lf the flow at t = 0 is vr, 0), we have for time t by definition
(.C28) ( , t) = - Ot, O)

where c is the translational velocity of the pattern, might be a func-

tion of t, but in practical applications the assumption that a is a

constant is probably as good as any other on the average. The trajec-

tory may be constructed directly by

t ((29) r v r -'a ,old
0

Figure 24 illustrates a case of the construction.

We may also compute the trajectory by an alternate method. In

cases where the field of v(r, 0)-4 is easily obtained as a continuous

field, this alternate method is more rapid and gives more accurate re-

sult8. This happens, for example, when v(r, 0) is given by a stream

function, v(r, 0) = Gk x Vl4Pwhere G is a constant. We then form the

auxiliary stream function 27 defined by-c = G k x V77. Since c is a

constant, 7 = const will be straight lines parallel to c. The field

of V(r, 0)-4 is then obti .ned by graphical addition of the Vt and 77

eL P' (-*) = 0)-> = a k x 7('r+ 77 ). "'( ) is the relative ve-.

locit7 field, as appearing to an observer that moves with velocity c.
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;C

f1 '

(

r,,

bQ2

r. STREAMLINES

Figure 24. Construction of a Trajectory in a
Flow Pattgrn that Moves Across the Chart with
Velocity c. P 1, etc., are the objec-
tive positions at 0t 1, 2, etc.

This field is stationary and the trajectories in this field (the rela-

tive trajectories) coincide with the streamlines (the relative stream-

lines). The relative trajectories are obtained from

(30) r=

and since r r r' + ot, the chart trajectory ("absolute" trajectory) is

obtained from

Y:1 (31) r ( $ '()d + at.

0

Denoting the stream function of the relative velocity V' by y,

y = 1 + 77, the relative trajectory is parallel to the 7 lines. The

object's positions on the relative trajectory as a function of time may
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be found by measuring the distances between adjacent y lines In the

same way as done when computing geostrophic winds from contour charts.

A useful relation is found by noting that the area swept by a normal to

the trajectory and following the object (the normal being bounded by

the two adjacent y lines) is proportional to the time of travel. This

.d Z relationship follows from Figure 25. Referring to this Figure, we can

write:
Ai(32) v t

where As is distance measured along the relative trajectory. Hence,

where AA is an area element. Summed over the trajectory:
.. (33). t - bdyA

'We can locate the object at any time from Formula 33 by measuring

the area between two adjacent y lines from the normal through the ini-

tial point Pc to thenormal through the end point.

Figure 25. A Relative Trajectory in the Contour
jield of the Relative Velocity. The relative tra-
lectory (thick line) starts at P. Travel time of
the object is proportional to thi area A between
the adjacent contour lines, y and y + P.

Figures 5 and 6 of sub-section 1.10 show some trajectories computed
by the method of relative trajectories. In these constructions it is

assumed that the velocity is geostrophic, so that the 'e field is iden-

tical with the contour field. The variation of G with latitude

(G = g/f) may be taken into account by introducing the same variation

fin the ?7 field; the 77 lines are then no longer strictly parallel or

equidistant.
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The relative trajectory method is often advantageous near pressure

centers and troughs and ridges with appreciable curvature. Often the

best estimate we can make of the behavior of such flow patterns between

synoptic charts is a straight translation from one map to another in

the limited area of the chart occupied by these features. The Relative

Trajectory Method applied to the parts of the trajectory which approach

these features will give a more realistic trajectory than, for example,

the Central Tendency Method. To illustrate this by an extreme example,

take the trajectory from point A in Figure 6. The Central Tendency

Method (see sub-section 1.7) would keep the object stationary at

point A for a period of 6 hours before and 6 hours after map time.

Since the circulation center moves, however, the object will be caught

by the northwesterly winds behind the center and start to move south-

eastward as shown by the trajectory.

2.2.6. Constant Vorticity Trajectories. Constant vorticity trajec-

tories have been discussed previously in AWS TR 105-99, December 1952.

The trajectories are computed from

(3) f + k t v °  f 0o

where vo and f0 are initial values 6r speed and Coriolis parameter, and
kt is the curvature of the trajectory.

The conditions imposed upon the atmosphere by (34) are only very

infrequently met satisfactorily on constant-pressure charts at any

level.
In tests the method has been found to be less satisfactory than

other standard methods [18).
Since the method requires only data at the initial point, it may

be considered as a method for forecasting the trajectory when little or

no data are available downstream. This leads into the realm of fore-

casting for no-data-areas, which is beyond the scope of this Manual.

2.3. Effect of Eddies on the Trajectory.

The atmospheric motion that we can chart and predict is a smoothed

motion, i.e., the motion is a space and time average of the actual mo-

tion. The space scale and the time scale of this averaging process is

(in a not too definite manner) determined by the distances between ob-

serving points in the flow analysis, and also by the frequency and

accuracy of the observations. Of necessity in the prognostic flow
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charts these scales become enlarged, since our ability to predict be-

cmes poorer as the space scale and time scale of the motion diminish.

The motion& of smaller dimensions than these averaging scales (at

present perhaps 100-200 nautical miles and 6-12 hours for the high-
level flow over the U. S.) will for our purpose be called eddies. The

eddies represent a random component of motion unobservable and, there-
fore, in principle unpredictable. The eddies of a magnitude equal to

or larger than the balloon are the ones which will affect its trajec-
tory. The extent to which the trajectory is affected will determine an

upper limit for the accuracy with which we can forecast the trajectory.

Our knowledge of the eddies of the high-level flow is very limited.

However, a few experiments have been conducted which throw some light

on the eddy ffect along a trajectory.

C. B. Moore et al [22] studied the trajectories of balloons re-

leased.,simultaneously to float at 300 mb. The balloons were tracked by

aircraft. Table VII gives the observed horizontal separation of the
balloons. Most of the time the vertical separation was .less than 150

feet.

TALE VII

Separation of Balloon Pairs at 300 mb.

Fight ftis- Flight Time Separation Across ,,
tance when when in % of Track

Pair Compared Compared Separation Flight Separatl~on
.o, (mi) (hr) (mi) Distance (mi)

1 850 14.5 20 2.3 8
2 775 18.0 13 1.7 6
3* 1200 20.2 1 .08 1

* 1200 20.2 5 .4 1
5* 1200 20.2 5 .4 1
6 164o 27.5 18 1.1 5

*Pairs 3, 4, and 5 are internal comparisons of a cluster of three balloons.

These separations, presumably mainly due to eddy motions, appear

surprisingly small. The mean vector error of hindcast trajectories is

about 20% of the distance travelled. Compared to that error the effect

of eddy motions on the trajectory appears negligibly small. We might

be tempted to draw the conclusion that the unpredictable eddy motions

contribute very little to the error in the trajectory hindcasts. This
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conclusion is probably not correct. Owing to the various sizes of
eddies encountered, the rate at which two talloons separate is a func-

tion of the distance between them (Richardson [26], Sutton [30), Durst

and Gilbert [51). This is illustrated in Figure 26 where two eddies of

scale S are indicated. The two particles B1 and B2, a distance s

(s << -) apart. will separate very little in a given time; whereas, the
two particles B1 and B3, a distance S apart, will change distance

rapidly.

$ A

Figure 26. Illustration of the
Effectiveness of Eddies in Separat-
ing Two Air Parcels as a Function of
the Initial Separation and the Scale
of the Eddies.

The separation of the balloons in Table VII only reached a magni-
tude of the order of 10-20 miles. This magnitude is much smaller than
the averaging scale of the upper-level synoptic flow fields; hence,
Table VII shows only the effect of the lower end of the eddy spectrum.

When we make a trajectory hindcast or forecast, we may think of
the computed position and the verifying position as representing posi-

tions of a balloon pair. The separation between them is the forecast
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error. The "computed balloon is not affected by eddies; the actual

balloon is. The larger-scale eddies are particularly effective in

causing large errors, but are much less effective in separating an act-

ual balloon pair as long as their distances apart are of smaller scale

than the eddies we consider. Hence, we-cannot conclude from Table VII

that eddy moticn contributes only little to the error of computed tra-

jectories. It should be recalled here that eddies were defined as

motions of scales less than the averaging scales. The error in a com-

puted trajectory is due to the errors in the smoothed motion as well as

to eddies. In just what proportions these two enter is not possible to

say at the present time. The smoothed flow is only very loosely de-

fined in synoptic analysis practice, and we alsq have no ready means of

obtaining the errors of analysis of this smoothed flow. We can state

only that their combined effects is of the order of 15-20% of the dis-

tance travelled (see sub-section 1.13).

8
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